二元一次方程教案Word文档格式.docx

上传人:b****2 文档编号:15237878 上传时间:2022-10-28 格式:DOCX 页数:9 大小:62.39KB
下载 相关 举报
二元一次方程教案Word文档格式.docx_第1页
第1页 / 共9页
二元一次方程教案Word文档格式.docx_第2页
第2页 / 共9页
二元一次方程教案Word文档格式.docx_第3页
第3页 / 共9页
二元一次方程教案Word文档格式.docx_第4页
第4页 / 共9页
二元一次方程教案Word文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

二元一次方程教案Word文档格式.docx

《二元一次方程教案Word文档格式.docx》由会员分享,可在线阅读,更多相关《二元一次方程教案Word文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

二元一次方程教案Word文档格式.docx

2、请你也设计一张表格,列出这名球员投中的两分球和三分球的各种可能情况。

并请回答下列问题:

(1)这名球员最多投中了多少个三分球?

(2)这名球员最多投中了多少个球?

(3)如果这名球员投中了10个球,那么他投中了几个两分球?

几个三分球?

4、提问方程2x+y=20和2x+3y=25有哪些共同得特点?

5、概括总结:

像这含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。

适合二元一次方程的一对未知数的值称为这个二元一次方程的一个解。

记作:

6、典型例题:

例1甲种物品每个4kg,乙种物品每个7kg.现有甲种物品x个,乙种物品y个,共76kg.

(1)列出关于x、y的二元一次方程;

(2)如果x=12,求y的值;

(3)请将关于x、y的二元一次方程写成用含x的代数式表示y的形式

7、探究:

根据下列语句,分别设适当的未知数,列出二元一次方程:

一个长方形的周长是20cm,求这个长方形的长和宽.

8、巩固练习

(1)判断下列方程哪些是二元一次方程,哪些不是?

 ① 6x+3y=4z ②7xy+y =9  ③2x+y+1 ④ 2(x+y)=8-x

(2)把下列方程写成用含x的代数式表示y的形式

①2x+y=10  ②x+y=20  ③2x+3y=12

三、归纳总结:

1、体会方程是刻画现实世界的有效的数学模型。

2、掌握二元一次方程的概念及二元一次方程解的写法。

【课后作业】

班级  姓名   学号

1、方程mx-2y=x+5是二元一次方程时,m的取值为  ()

A、m≠0ﻩﻩﻩB、m≠1C、m≠-1ﻩﻩD、m≠2

2、方程的公共解是       ( )

A、B、  C、 D、

3、若,的符号为  (  )

A、同号 B、异号  C、可能同号可能异号D、

4、二元一次方程2x+y=5中,当x=2时,y=  ;

5、把二元一次方程 写成用含x的代数式表示y的形式是    

6、已知方程 是二元一次方程,则m=_____;

n=______.

7、方程的非正整数解有 组,分别为     。

8、写出一个二元一次方程,使其满足的系数是大于2的自然数,的系数是小于-3的整数,且是它的一个解。

    。

9、校初一年级200名学生参加期中考试,数学成绩情况如下表,问这次考试中及格和不及格的人数各是多少人?

(只列方程)

平均分

及格学生

87

不及格学生

43

初一年级

76

ﻫ10、如图,等腰三角形ABC,AB=x,BC=y,周长为12.

(1)列出关于x、y的二元一次方程

(2)求该方程的所有整数解。

11、已知是方程2x+3y=5的一

个解,求a的值. 

12、甲种铅笔每枝0.2元,乙种铅笔每枝0.5元,现在某人买了x枝甲种铅笔,y枝乙种铅笔,共花了7元.

(1)列出关于x,y的二元一次方程.

(2)如果x=5,那么y的值是多少?

(3)如果乙种铅笔买了10枝,那么甲种铅笔买了多少枝?

 10.1 二元一次方程

1、教学目标

[知识目标]

(1)使学生了解二元一次方程的概念;

(2)了解二元一次方程的解的概念和解的不唯一性,会判断一对数值是否为某二元一次方程的解;

(3)会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。

[能力目标]

(1)经历分析实际问题中数量关系的过程,体会二元一次方程是刻画现实世界的有效教学模型,增强学生的教学应用意识和能力。

(2)经历用尝试的方法探索二元一次方程的解,并了解解的不唯一性,并体会方法的多样性。

(3)使学生进一步理解归纳和类比的数学方法,以及从具体到抽象获取知识的思维方式。

[情感目标]

在探索活动中,培养合作交流的意识,体验成功的喜悦,增强自信心。

2、教学重点:

二元一次方程及其解的概念

教学难点:

(1)用列表法求二元一次方程的解

(2)把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形成,其实质是解一个含有字母系数的方程,是难点。

3、教学方法:

启发式讲授法、合作探究法

4、教学过程

教 师 活 动

学生活动

设计意图

情景一:

根据篮球比赛规则:

赢一场得2分,输一场得1分,在一次中学生篮球联赛中,一支球队赛完若干场后得20分。

问该队赢多少场?

输多少场?

师(故作聪明状):

哇,太简单了!

x=5,y=10呗!

师点拨:

用表格的方法列出输赢的所有可能情况。

思考:

(1)你是怎样列表的?

(2)填表过程中有什么发现?

教师追问:

我们知道,每取一个x,就有一个y相对应;

反之,若先确定y,x能否确定?

情景二:

一球员在一场篮球比赛中共得35分(其中罚球得10分),问他分别投中了多少个两分球和三分球?

请你设计一张表格,列出这名球员投中的两分球和三分球的各种可能情况。

根据你所列的表格,回答下列问题:

(1)这名球员最多投中了多少个三分球?

(2)这名球员最多投中了多少个球?

(3)如果这名球员投中了10个球,那么他投中了几个两分球?

几个三分球?

回顾旧知,学习新课:

一元一次方程的概念及一元一次方程解的概念。

2x+y=20,2x+3y=25是什么方程?

这两个方程有哪些共同的特点?

二元一次方程的概念

二元一次方程解的概念

解的表示方法:

记作:

师追问:

(1)一个二元一次方程有多少个解?

(2)在上述两个具体情境中呢?

巩固练习,拓展思维

例1:

下列方程中,哪些是二元一次方程?

不是的说明理由.

(3)3pq=-8     (4)  2y2-6y=1

(5)5(x-y)+2(2x-3y)=4(6)7x+2=3

例2:

下面3对数值,那几对是二元一次方程2x+y=3的解?

那几对是3x+4y=2的解?

例3:

把下列方程写成用含x的代数式表示y的形式。

2x+y=20    2x+3y=25

变式:

用含y的代数式表示x。

归纳小结

教师引导学生从回顾知识和总结方法两个方面进行课堂小结.

(1)回顾知识:

二元一次方程的相关概念.

(2)总结方法:

  设未知数 列方程

数学方法的多样性等。

当堂反馈:

(1)二元一次方程2x-y=3中,当x=2时,y=   ;

二元一次方程   中,当y=-2时,x=    ;

(2)已知   是方程2x+ay=5的解,则a=   .

(3)请你编写一道以为解的二元一次方程。

(4)甲种铅笔每枝0.2元,乙种铅笔每枝0.5元,现在某人买了x枝甲种铅笔,y枝乙种铅笔,共花了7元.

(1)列出关于x,y的二元一次方程.

(2)如果x=5,那么y的值是多少?

(3)如果乙种铅笔买了10枝,那么甲种铅笔买了多少枝?

作业:

P95页1,   2, 3

先独立思考,然后在教师的引导下将实际问题转化为数学问题,从而用方程解决。

设该队赢了x场,输了y场

2x+y=20

学生在老师的调动下积极思考,发现问题,寻求解决方案。

先独立思考、独做,后分组讨论:

发现:

(1)x、y必须取非负整数,且有一定的范围;

(2)不止一个答案;

(3)每取一个x,就有一个y相对应。

生:

可以!

但是当y=1,3,5,……时,x为小数,不合题意,不予考虑。

独做:

设他投中了x个两分球,y个三分球

2x+3y+10=35

   即:

2x+3y=25

发现:

(1)不是每一个整数x都有一个整数y相对应;

(2)方法的多样性。

实物展示学生表格:

生1:

(尝试法)

x

1

2

……

y

生2:

生3:

(代数法)y=

只要x取非负整数时,使25-2x是3的整数倍就行。

根据列表回答。

在问题解决中体会方案的最优化设计。

(1)含有一个未知数;

(2)未知数的的次数为1;

(3)方程(整式)。

能使方程左右两边相等的未知数的值叫做方程的解。

先观察,独立思考,再分组讨论交流。

小组小结:

二元一次方程:

(1)含有两个未知数;

(2)所含有未知数的项的次数都是1;

一般的,一个二元一次方程有无数个解,但在实际问题中要具体考虑。

根据二元一次方程的概念,学生口答。

学生板演:

根据二元一次方程解的概念

(2)、(3)是2x+y=3的解,

(1)

(2)是3x+4y=2的解。

生独做。

(1)展示错误资源;

(2)师生共同探讨。

今天,我的收获是……

学生当堂完成。

体会二元一次方程在解决实际问题中的必要性,让学生有“用数学”的冲动。

适时激趣。

通过思考、探究,初步体会二元一次方程解的不唯一性和相关性

逆向思维,进一步加深对解的相关性的理解。

关注数学方法的多样性,肯定学生的思维创新,从而加深对数学本质的理解。

让学生经历、体会用方程解决实际问题的过程。

体现“数学来源于生活,又服务于生活”的理念。

通过类比的方法将一元一次方程的相关概念适时的迁移到二元一次方程上来,符合学生学习的最近发展区理论。

通过观察、思考、分析两个方程的特点,使学生经历概念的归纳和概括的过程,引导学生深层次地参与到概念的形成过程中。

区别纯代数问题和实际问题,力求数学思维的完备性。

通过练习使学生巩固二元一次方程的概念,把握住概念的本质.

渗透两个二元一次方程的公共解,为后续知识的学习服务。

类比一元一次方程的解法,解一个含有字母系数的方程,体现化归思想。

主要由学生进行总结和互相补充,教师只做适当的点拨,以培养学生的归纳概括能力.

限时训练,主要是对本节课所学知识的终结性评价。

板 书  设   计

投影幕

10.1二元一次方程

1、二元一次方程的概念  例题解答

① ②  ③

2、二元一次方程的解

3、解的表示法

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 工作总结汇报

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1