高中物理数学物理法题20套带答案Word格式.docx

上传人:b****2 文档编号:15094534 上传时间:2022-10-27 格式:DOCX 页数:25 大小:543.38KB
下载 相关 举报
高中物理数学物理法题20套带答案Word格式.docx_第1页
第1页 / 共25页
高中物理数学物理法题20套带答案Word格式.docx_第2页
第2页 / 共25页
高中物理数学物理法题20套带答案Word格式.docx_第3页
第3页 / 共25页
高中物理数学物理法题20套带答案Word格式.docx_第4页
第4页 / 共25页
高中物理数学物理法题20套带答案Word格式.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

高中物理数学物理法题20套带答案Word格式.docx

《高中物理数学物理法题20套带答案Word格式.docx》由会员分享,可在线阅读,更多相关《高中物理数学物理法题20套带答案Word格式.docx(25页珍藏版)》请在冰豆网上搜索。

高中物理数学物理法题20套带答案Word格式.docx

0的区域内存在方向垂直纸面向外的匀强磁场。

现一带正电的粒子从x轴上坐标为(-2l,0)的A点以速度v0沿x轴正方向进入电场,从y轴上坐标为(0,l)的B点进入磁场,带电粒子在x>

0的区域内运动一段圆弧后,从y轴上的C点(未画出)离开磁场。

已知磁场的磁感应强度大小为,不计带电粒子的重力。

(1)带电粒子的比荷;

(2)C点的坐标。

(2)(0,-3t)

(1)带电粒子在电场中做类平抛运动,x轴方向

y轴方向

联立解得

(2)设带电粒子经过B点时的速度方向与水平方向成θ角

解得

则带电粒子经过B点时的速度

由洛伦兹力提供向心力得

带电粒子在磁场中的运动轨迹如图所示

根据几何知识可知弦BC的长度

故C点的坐标为(0,-3t)。

3.如图所示,在xoy平面内y轴右侧有一范围足够大的匀强磁场,磁感应强度大小为B,磁场方向垂直纸面向外;

分成I和II两个区域,I区域的宽度为d,右侧磁场II区域还存在平行于xoy平面的匀强电场,场强大小为E=,电场方向沿y轴正方向。

坐标原点O有一粒子源,在xoy平面向各个方向发射质量为m,电量为q的正电荷,粒子的速率均为v=。

进入II区域时,只有速度方向平行于x轴的粒子才能进入,其余被界面吸收。

不计粒子重力和粒子间的相互作用,求:

(1)某粒子从O运动到O'

的时间;

(2)在I区域内有粒子经过区域的面积;

(3)粒子在II区域运动,当第一次速度为零时所处的y轴坐标。

(2);

(3)0

(1)根据洛伦兹力提供向心力可得

则轨迹半径为

粒子从运动到的运动的示意图如图所示:

粒子在磁场中运动的轨迹对应的圆心角为

周期为

所以运动时间为

(2)根据旋转圆的方法得到粒子在I区经过的范围如图所示,沿有粒子通过磁场的区域为图中斜线部分面积的大小:

根据图中几何关系可得面积为

(3)粒子垂直于边界进入II区后,受到的洛伦兹力为

在II区受到的电场力为

由于电场力小于洛伦兹力,粒子将向下偏转,当速度为零时,沿方向的位移为,由动能定理得

所以第一次速度为零时所处的y轴坐标为0。

4.如图所示,电流表A视为理想电表,已知定值电阻R0=4Ω,滑动变阻器R阻值范围为0~10Ω,电源的电动势E=6V.闭合开关S,当R=3Ω时,电流表的读数I=0.5A。

(1)求电源的内阻。

(2)当滑动变阻器R为多大时,电源的总功率最大?

最大值Pm是多少?

(1)5Ω;

(2)当滑动变阻器R为0时,电源的总功率最大,最大值Pm是4W。

(1)电源的电动势E=6V.闭合开关S,当R=3Ω时,电流表的读数I=0.5A,根据闭合电路欧姆定律可知:

得:

r=5Ω

(2)电源的总功率

P=IE

当R=0Ω,P最大,最大值为,则有:

W

5.在一次国际城市运动会中,要求运动员从高为H的平台上A点由静止出发,沿着动摩擦因数为的滑道向下运动到B点,B端有一长度可不计的光滑圆弧连接,末端恰好水平,运动员最后落在水池中,设滑道的水平距离为L,B点的高h(小于H)可由运动员自由调节(),求:

(1)运动员到达B点的速度与高度h的关系;

(2)要使运动员全过程的水平运动距离达到最大,B点的高度h应调为多大;

对应的最大水平距离为多大?

(3)若图中H=4m,L=5m,动摩擦因数,则全过程的水平运动距离要达到7m,h值应为多少?

(已知)

(2)(3)或

(1)设AB与水平面夹角为θ,A运动到B过程,克服摩擦阻力做功为

由A运动到B过程,由动能定理得

(2)物体做平抛运动,则,,所以

当,即

时x有最大值为

对应的最大水平距离为

(3)由

(2)可知

代入数据得

6.如图所示,MN是一个水平光屏,多边形ACBOA为某种透明介质的截面图。

为等腰直角三角形,BC为半径R=8cm的四分之一圆弧,AB与光屏MN垂直并接触于A点。

一束紫光以入射角i射向AB面上的O点,能在光屏MN上出现两个亮斑,AN上的亮斑为P1(未画出),AM上的亮斑为P2(未画出),已知该介质对紫光的折射率为。

(1)当入射角i=30°

时,求AN上的亮斑P1到A点的距离x1;

(2)逐渐增大入射角i,当AN上的亮斑P1刚消失时,求此时AM上的亮斑P2到A点的距离x2。

(1)8cm;

(2)8cm

(1)根据题意画出光路图:

设分界面上的折射角为,根据折射定律

在中

(2)当光在面上的入射角满足

上的亮斑刚消失设紫光的临界角为,画出光路图

则有

当时,面上反射角,反射光线垂直射到面上后入射到上,则

7.如图所示,一对带电平行金属板A、B与竖直方向成角放置,两板间的电势差。

B板中心有一小孔正好位于平面直角坐标系xoy的坐标原点O点,y轴沿竖直方向。

现有一带负电的粒子P,其比荷为,从A板中心处静止释放后,沿垂直于金属板的直线进入x轴下方第四象限的匀强电场E中,该匀强电场方向与A、B板平行且斜向上。

粒子穿过电场后,从Q点(0,-2)离开电场(Q点图中未标出),粒子的重力不计。

试求:

(1)粒子从O点进入匀强电场时的速度v0;

(2)匀强电场的场强E的大小。

(2)

(1)对于粒子在AB间加速过程,由动能定理得

可得

(2)粒子P在进入电场后做类平抛运动,设离开电场时距O距离为L,以O为坐标原点,沿着v0方向建立轴,逆着场强方向建立轴,则有轴方向粒子做匀速直线运动,有

轴方向粒子做匀加速直线运动,有

代入数据得,匀强电场的场强大小

8.在考古中为了测定古物的年代,可通过测定古物中碳14与碳12的比例,其物理过程可简化为如图所示,碳14与碳12经电离后的原子核带电量都为q,从容器A下方的小孔S不断飘入电压为U的加速电场,经过S正下方的小孔O后,沿SO方向垂直进入磁感应强度为B、方向垂直纸面向外的匀强磁场中,最后打在相机底片D上并被吸收。

已知D与O在同一平面内,其中碳12在底片D上的落点到O的距离为x,不考虑粒子重力和粒子在小孔S处的初速度。

(1)求碳12的比荷;

(2)由于粒子间存在相互作用,从O进入磁场的粒子在纸面内将发生不同程度的微小偏转(粒子进入磁场速度大小的变化可忽略),其方向与竖直方向的最大偏角为α,求碳12在底片D上的落点到O的距离的范围;

(3)实际上,加速电场的电压也会发生微小变化(设电压变化范围为U±

ΔU),从而导致进入磁场的粒子的速度大小也有所不同。

现从容器A中飘入碳14与碳12最终均能打在底片D上,若要使这两种粒子的落点区域不重叠,则ΔU应满足什么条件?

(粒子进入磁场时的速度方向与竖直方向的最大偏角仍为α)

(2)距离范围为;

(3)

(1)经加速电场有

在磁场中

解得碳12的比荷

(2)粒子在磁场中圆运动半径

由图像可知,粒子左偏α角(轨迹圆心为O1)或右偏α角(轨迹圆心为O2),落点到O的距离相等均为L=2rcosθ,故θ=0°

时落点到O的距离最大

Lmax=2r=x

故θ=α时落点到O的距离最小

Lmin=2rcosα=xcosα

所以落点到O的距离范围为

(3)设碳12的质量为m1,碳14的质量为m2,并且

根据可知:

碳12的运动半径

碳12的最大半径

同理:

碳14的运动半径

碳14的最小半径

若要使这两种粒子的落点区域不重叠,打中底片时离O点的距离应需满足:

碳14的最近距离大于碳12的

最远距离,即

2r1max2r2mincosα

联立解得ΔU应满足的条件

答:

(1)碳12的比荷为;

(2)碳12在底片D上的落点到O的距离的范围为;

(3)若要使这两种粒子的落点区域不重叠,则U应满足。

【点睛】

本题考查带电粒子在复合场中的运动,加速场运用动能定理,粒子在磁场中做匀速圆周运动,利用洛伦兹力提供向心力结合几何关系,第三问难点在于找出粒子不重叠的条件,即:

打中底片时离O点的距离应需满足:

碳14的最近距离大于碳12的最远距离。

9.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.水平桌面右侧有一竖直放置的轨道MNP,其形状为半径R=1.0m圆环剪去了左上角120°

的圆弧,MN为其竖直直径,P点到桌面的数值距离是h=2.4m.用质量m1=0.4kg的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B点,用同种材料、质量为m2=0.2kg的物块将弹簧缓慢压缩到C点释放,物块通过B点后做匀变速运动,其位移与时间的关系为x=6t-2t2,物块飞离桌面后恰好由P点沿切线落入圆轨道(不计空气阻力,g取10m/s2).求:

⑴物块m2过B点时的瞬时速度vB及与桌面间的滑动摩擦因数μ;

⑵若轨道MNP光滑,物块m2经过轨道最低点N时对轨道的压力FN;

⑶若物块m2刚好能到达轨道最高点M,则释放m2后整个运动过程中其克服摩擦力做的功W.

【答案】⑴vB=6m/s,μ=0.4;

⑵FN=16.8N;

⑶W=8.0J

试题分析:

⑴由题意质量为m2的物块将弹簧缓慢压缩到C点释放,物块通过B点后做匀变速运动,其位移与时间的关系为x=6t-2t2可知,物块m2过B点时的瞬时速度为:

vB=6m/s,加速度为:

a=-4m/s2①

物块离开B点后在桌面上受重力m2g、桌面的支持力N和滑动摩擦力f作用,根据牛顿第二定律可知,在水平方向上有:

-f=m2a②

在竖直方向上有:

N-m2g=0③

根据滑动摩擦定律有:

f=μN④

由①②③④式联立解得:

μ==0.4

⑵物块从D点离开桌面后做平抛运动,设至P点时速度在竖直方向上的分量为vy,则在竖直方向上,根据自由落体运动规律有:

h=⑤

因物块由P点沿切线落入圆轨道,由几何关系和物块水平方向做匀速运动的规律可知:

vy=vDtan60°

物块由D运动至N的过程中,只有重力做功,根据动能定理有:

m2g(h+R-Rcos60°

)=-⑦

在N点处,物块受重力m2g和圆轨道的支持力FN′作用,根据牛顿第二定律有:

FN′-m2g=⑧

根据牛顿第三定律可知,物块m2经过轨道最低点N时对轨道的压力FN=FN′⑨

由⑤⑥⑦⑧⑨式联立解得:

FN=+m2g(3-2cos60°

)=16.8N

⑶设CB距离为x1,BD距离为x2,在物块m1由C运动至B的过程中,根据功能关系有:

Ep=μm1gx1⑩

在物块m2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 商业计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1