第五版物理化学第三章习题答案Word文档下载推荐.docx

上传人:b****2 文档编号:15079502 上传时间:2022-10-27 格式:DOCX 页数:41 大小:1.40MB
下载 相关 举报
第五版物理化学第三章习题答案Word文档下载推荐.docx_第1页
第1页 / 共41页
第五版物理化学第三章习题答案Word文档下载推荐.docx_第2页
第2页 / 共41页
第五版物理化学第三章习题答案Word文档下载推荐.docx_第3页
第3页 / 共41页
第五版物理化学第三章习题答案Word文档下载推荐.docx_第4页
第4页 / 共41页
第五版物理化学第三章习题答案Word文档下载推荐.docx_第5页
第5页 / 共41页
点击查看更多>>
下载资源
资源描述

第五版物理化学第三章习题答案Word文档下载推荐.docx

《第五版物理化学第三章习题答案Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《第五版物理化学第三章习题答案Word文档下载推荐.docx(41页珍藏版)》请在冰豆网上搜索。

第五版物理化学第三章习题答案Word文档下载推荐.docx

当从高温热源吸热时,系统对环境作的功及向低温热源放出的热

(1)由卡诺循环的热机效率得出

(2)

3.3卡诺热机在的高温热源和的低温热源间工作,求

(1)热机效率;

(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。

(1)

(2)

3.4试说明:

在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功等于不可逆热机作出的功-W。

假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。

证:

(反证法)

不可逆热机从高温热源吸热,向低温热源放热,对环境作功

逆向卡诺热机从环境得功从低温热源吸热向高温热源放热

若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即

总的结果是:

得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。

3.5高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。

解:

将热源看作无限大,因此,传热过程对热源来说是可逆过程

3.6 

不同的热机中作于的高温热源及的低温热源之间。

求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。

可逆热机效率。

不可逆热机效率。

(3) 

设热机向低温热源放热,根据热机效率的定义

因此,上面三种过程的总熵变分别为。

3.7 

已知水的比定压热容。

今有1kg,10℃的水经下列三种不同过程加热成100℃的水,求过程的。

(1)系统与100℃的热源接触。

(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。

(3)系统先与40℃,70℃的热源接触至热平衡,再与100℃的热源接触。

熵为状态函数,在三种情况下系统的熵变相同

在过程中系统所得到的热为热源所放出的热,因此

3.8 

已知氮(N2,g)的摩尔定压热容与温度的函数关系为

将始态为300K,100kPa下1mol的N2(g)置于1000K的热源中,求下列过程

(1)经恒压过程;

(2)经恒容过程达到平衡态时的。

(1)在恒压的情况下

 

(2)在恒容情况下,将氮(N2,g)看作理想气体 

将代替上面各式中的,即可求得所需各量

3.9 

始态为,的某双原子理想气体1mol,经下列不同途径变化到,的末态。

求各步骤及途径的。

恒温可逆膨胀;

(2)先恒容冷却至使压力降至100kPa,再恒压加热至;

先绝热可逆膨胀到使压力降至100kPa,再恒压加热至。

(1)对理想气体恒温可逆膨胀,△U=0,因此

(2)先计算恒容冷却至使压力降至100kPa,系统的温度T:

(3)同理,先绝热可逆膨胀到使压力降至100kPa时系统的温度T:

根据理想气体绝热过程状态方程,

各热力学量计算如下

3.10 

1mol理想气体在T=300K下,从始态100KPa到下列各过程,求及。

可逆膨胀到压力50Kpa;

反抗恒定外压50Kpa,不可逆膨胀至平衡态;

向真空自由膨胀至原体积的2倍

3.11某双原子理想气体从始态,经不同过程变化到下述状态,求各过程的

(1)过程

(1)为PVT变化过程

(3)

2.12 

2mol双原子理想气体从始态300K,50dm3,先恒容加热至400K,再恒压加热至体积增大到100dm3,求整个过程的。

过程图示如下

先求出末态的温度

因此,

3.13 

4mol单原子理想气体从始态750K,150KPa,先恒容冷却使压力降至50KPa,再恒温可逆压缩至100KPa,求整个过程的

(a) 

(b) 

3.14 

3mol双原子理想气体从始态,先恒温可逆压缩使体积缩小至,再恒压加热至,求整个过程的及。

3.155mol单原子理想气体,从始态300K,50kPa先绝热可逆压缩至100kPa,再恒压冷却至体积为85dm3的末态。

求整个过程的Q,W,△U,△H及△S。

3.16 

始态300K,1MPa的单原子理想气体2mol,反抗0.2MPa的恒定外压绝热不可逆膨胀至平衡态。

求过程的

3.17 

组成为的单原子气体A与双原子气体B的理想气体混合物共10mol,从始态,绝热可逆压缩至的平衡态。

求过程的。

混合理想气体的绝热可逆状态方程推导如下

容易得到

3.18 

单原子气体A与双原子气体B的理想气体混合物共8mol,组成为,始态。

今绝热反抗恒定外压不可逆膨胀至末态体积的平衡态。

先确定末态温度,绝热过程,因此

3.19 

常压下将100g,27℃的水与200g,72℃的水在绝热容器中混合,求最终水温t及过程的熵变。

3.20 

将温度均为300K,压力均为100KPa的100的的恒温恒压混合。

求过程,假设和均可认为是理想气体。

3.21 

绝热恒容容器中有一绝热耐压隔板,隔板一侧为2mol的200K,的单原子理想气体A,另一侧为3mol的400K,100的双原子理想气体B。

今将容器中的绝热隔板撤去,气体A与气体B混合达到平衡态,求过程的。

A

B

n=2mol

n=3mol

n=2+3(mol)

T=200K

T=400K

T=?

V=

∵绝热恒容混合过程,Q=0,W=0∴△U=0

T2=342.86K

注:

对理想气体,一种组分的存在不影响另外组分。

即A和B的末态体积均为容器的体积。

3.22 

绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N2(g)。

一侧容积50dm3,内有200K的N2(g)2mol;

另一侧容积为75dm3,内有500K的N2(g)4mol;

N2(g)可认为理想气体。

今将容器中的绝热隔板撤去,使系统达到平衡态。

同上题,末态温度T确定如下

经过第一步变化,两部分的体积和为

即,除了隔板外,状态2与末态相同,因此

注意21与22题的比较。

3.23 

甲醇()在101.325KPa下的沸点(正常沸点)为,在此条件下的摩尔蒸发焓,求在上述温度、压力条件下,1Kg液态甲醇全部成为甲醇蒸汽时。

3.24 

常压下冰的熔点为0℃,比熔化焓,水的比定压热熔。

在一绝热容器中有1kg,25℃的水,现向容器中加入0.5kg,0℃的冰,这是系统的始态。

求系统达到平衡后,过程的。

将过程看作恒压绝热过程。

由于1kg,25℃的水降温至0℃为

只能导致克冰融化,因此

3.25 

常压下冰的熔点是,比熔化焓,水的比定压热熔,系统的始态为一绝热容器中1kg,的水及0.5kg的冰,求系统达到平衡态后,过程的熵。

3.27 

已知常压下冰的熔点为0℃,摩尔熔化焓,苯的熔点为5.51℃,摩尔熔化焓。

液态水和固态苯的摩尔定压热容分别为及。

今有两个用绝热层包围的容器,一容器中为0℃的8molH2O(s)与2molH2O(l)成平衡,另一容器中为5.510℃的5molC6H6(l)与5molC6H6(s)成平衡。

现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。

粗略估算表明,5molC6H6(l)完全凝固将使8molH2O(s)完全熔化,因 

此,过程图示如下

总的过程为恒压绝热过程,,

3.28 

将装有0.1mol乙醚(C2H5)2O(l)的小玻璃瓶放入容积为10dm3的恒容密闭的真空容器中,并在35.51℃的恒温槽中恒温。

35.51℃为在101.325kPa下乙醚的沸点。

已知在此条件下乙醚的摩尔蒸发焓。

今将小玻璃瓶打破,乙醚蒸发至平衡态。

(1)乙醚蒸气的压力;

(2)过程的。

将乙醚蒸气看作理想气体,由于恒温

各状态函数的变化计算如

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1