ImageVerifierCode 换一换
格式:DOCX , 页数:41 ,大小:1.40MB ,
资源ID:15079502      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/15079502.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第五版物理化学第三章习题答案Word文档下载推荐.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第五版物理化学第三章习题答案Word文档下载推荐.docx

1、 当从高温热源吸热时,系统对环境作的功及向低温热源放出的热(1) 由卡诺循环的热机效率得出(2) 33 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率 ;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。 (1)(2)34 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功等于不可逆热机作出的功W。假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。证: (反证法) 设 不可逆热机从高温热源吸热,向低温热源放热,对环境作功则 逆向卡诺热机从环境得功从低温热源吸热向高温

2、热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。35 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。 解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。可逆热机效率。不可逆热机效率。(3)设热机向低温热源放热,根据热机效率的定义 因此,上面三种过程的总熵变分别为。3.7已知水的比定压热容。今有1 kg

3、,10的水经下列三种不同过程加热成100 的水,求过程的。(1)系统与100的热源接触。(2)系统先与55的热源接触至热平衡,再与100的热源接触。(3)系统先与40,70的热源接触至热平衡,再与100的热源接触。熵为状态函数,在三种情况下系统的熵变相同 在过程中系统所得到的热为热源所放出的热,因此3.8 已知氮(N2, g)的摩尔定压热容与温度的函数关系为 将始态为300 K,100 kPa下1 mol的N2(g)置于1000 K的热源中,求下列过程(1)经恒压过程;(2)经恒容过程达到平衡态时的。(1)在恒压的情况下 (2)在恒容情况下,将氮(N2, g)看作理想气体将代替上面各式中的,即

4、可求得所需各量3.9 始态为,的某双原子理想气体1 mol,经下列不同途径变化到,的末态。求各步骤及途径的。恒温可逆膨胀;(2)先恒容冷却至使压力降至100 kPa,再恒压加热至;先绝热可逆膨胀到使压力降至100 kPa,再恒压加热至。(1)对理想气体恒温可逆膨胀, U = 0,因此(2)先计算恒容冷却至使压力降至100 kPa,系统的温度T:(3)同理,先绝热可逆膨胀到使压力降至100 kPa时系统的温度T: 根据理想气体绝热过程状态方程, 各热力学量计算如下3.10 1mol理想气体在T=300K下,从始态100KPa 到下列各过程,求及。 可逆膨胀到压力50Kpa; 反抗恒定外压50Kp

5、a,不可逆膨胀至平衡态; 向真空自由膨胀至原体积的2倍311 某双原子理想气体从始态,经不同过程变化到下述状态,求各过程的 (1) 过程(1)为PVT变化过程(3)2.12 2 mol双原子理想气体从始态300 K,50 dm3,先恒容加热至400 K,再恒压加热至体积增大到100 dm3,求整个过程的。过程图示如下 先求出末态的温度 因此,313 4mol单原子理想气体从始态750K,150KPa,先恒容冷却使压力降至50KPa,再恒温可逆压缩至100KPa,求整个过程的(a)(b)3.14 3mol双原子理想气体从始态,先恒温可逆压缩使体积缩小至,再恒压加热至,求整个过程的及。3.15 5

6、 mol单原子理想气体,从始态 300 K,50 kPa先绝热可逆压缩至100 kPa,再恒压冷却至体积为85dm3的末态。求整个过程的Q,W,U,H及S。3.16 始态300K,1MPa的单原子理想气体2mol,反抗0.2MPa的恒定外压绝热不可逆膨胀至平衡态。求过程的3.17组成为的单原子气体A与双原子气体B的理想气体混合物共10 mol,从始态,绝热可逆压缩至的平衡态。求过程的。 混合理想气体的绝热可逆状态方程推导如下 容易得到3.18单原子气体A与双原子气体B的理想气体混合物共8 mol,组成为,始态。今绝热反抗恒定外压不可逆膨胀至末态体积的平衡态。 先确定末态温度,绝热过程,因此3.

7、19常压下将100 g,27的水与200 g,72的水在绝热容器中混合,求最终水温t及过程的熵变。320 将温度均为300K,压力均为100KPa的100的的恒温恒压混合。求过程,假设和均可认为是理想气体。 3.21 绝热恒容容器中有一绝热耐压隔板,隔板一侧为2mol的200K,的单原子理想气体A,另一侧为3mol的400K,100的双原子理想气体B。今将容器中的绝热隔板撤去,气体A与气体B混合达到平衡态,求过程的。ABn=2moln=3moln=2+3(mol)T=200KT=400KT=?V=绝热恒容 混合过程,Q = 0, W = 0 U = 0T2 = 342.86K注:对理想气体,一

8、种组分的存在不影响另外组分。即A和B的末态体积均为容器的体积。3.22绝热恒容容器中有一绝热耐压隔板,隔板两侧均为N2(g)。一侧容积50 dm3,内有200 K的N2(g) 2 mol;另一侧容积为75 dm3, 内有500 K的N2(g) 4 mol;N2(g)可认为理想气体。今将容器中的绝热隔板撤去,使系统达到平衡态。 同上题,末态温度T确定如下 经过第一步变化,两部分的体积和为 即,除了隔板外,状态2与末态相同,因此 注意21与22题的比较。3.23 甲醇()在101.325KPa下的沸点(正常沸点)为,在此条件下的摩尔蒸发焓,求在上述温度、压力条件下,1Kg液态甲醇全部成为甲醇蒸汽时

9、。3.24常压下冰的熔点为0,比熔化焓,水的比定压热熔。在一绝热容器中有1 kg,25的水,现向容器中加入0.5 kg,0的冰,这是系统的始态。求系统达到平衡后,过程的。 将过程看作恒压绝热过程。由于1 kg,25的水降温至0为 只能导致克冰融化,因此325 常压下冰的熔点是,比熔化焓,水的比定压热熔,系统的始态为一绝热容器中1kg,的水及0.5kg 的冰,求系统达到平衡态后,过程的熵。3.27 已知常压下冰的熔点为0,摩尔熔化焓,苯的熔点为5.5 1,摩尔熔化焓。液态水和固态苯的摩尔定压热容分别为及。今有两个用绝热层包围的容器,一容器中为0的8 mol H2O(s)与2 mol H2O(l)

10、成平衡,另一容器中为5.510的5 mol C6H6(l)与5 mol C6H6(s)成平衡。现将两容器接触,去掉两容器间的绝热层,使两容器达到新的平衡态。粗略估算表明,5 mol C6H6(l) 完全凝固将使8 mol H2O(s)完全熔化,因此,过程图示如下总的过程为恒压绝热过程, ,3.28将装有0.1 mol乙醚(C2H5)2O(l)的小玻璃瓶放入容积为10 dm3的恒容密闭的真空容器中,并在35.51的恒温槽中恒温。35.51为在101.325 kPa下乙醚的沸点。已知在此条件下乙醚的摩尔蒸发焓。今将小玻璃瓶打破,乙醚蒸发至平衡态。(1)乙醚蒸气的压力;(2)过程的。将乙醚蒸气看作理想气体,由于恒温各状态函数的变化计算如

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1