材料复习试题1Word文档下载推荐.docx

上传人:b****2 文档编号:15074405 上传时间:2022-10-27 格式:DOCX 页数:23 大小:143.06KB
下载 相关 举报
材料复习试题1Word文档下载推荐.docx_第1页
第1页 / 共23页
材料复习试题1Word文档下载推荐.docx_第2页
第2页 / 共23页
材料复习试题1Word文档下载推荐.docx_第3页
第3页 / 共23页
材料复习试题1Word文档下载推荐.docx_第4页
第4页 / 共23页
材料复习试题1Word文档下载推荐.docx_第5页
第5页 / 共23页
点击查看更多>>
下载资源
资源描述

材料复习试题1Word文档下载推荐.docx

《材料复习试题1Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《材料复习试题1Word文档下载推荐.docx(23页珍藏版)》请在冰豆网上搜索。

材料复习试题1Word文档下载推荐.docx

7、马氏体异常正方度

“新形成的马氏体”,正方度与碳含量的关系并不符合公式给出的关系,这种现象称为马氏体的异常正方度。

8、马氏体相变塑性

相变塑性:

金属与合金在相变过程中塑性增长,往往在低于母相屈服极限的条件下即发生了塑性变形,这种现象称为相变塑性。

钢在马氏体转变时也会产生相变塑性现象,称为马氏体的相变塑性。

9、相变冷作硬化

马氏体形成时的体积效应会引起周围奥氏体产生塑性变形,同时马氏体相变的切变特性,也将在晶体产生大量微观缺陷,如位错、孪晶、层错等。

这些缺陷在马氏体逆转变过程中会被继承,结果导致强度明显升高,而塑性韧性下降,这种现象被称为相变冷作硬化。

10、位向关系

在固态相变母相与新相之间所保持的晶体学空间取向关系称为位向关系。

11、K-S关系

在固态相变母相与新相之间所保持的晶体学位向关系,例如:

奥氏体向马氏体转变时新旧两相之间就维持这种位向关系(111)γ∥(110)α,〈110〉γ∥〈111〉α

12、组织遗传;

指非平衡组织重新加热淬火后,其奥氏体晶粒大小仍然保持原奥氏体晶粒大小和形状的现象。

13、相遗传;

母相将其晶体学缺陷遗传给新相的现象称为相遗传。

14、反稳定化

在热稳定化上限温度MC以下,热稳定程度随温度的升高而增加;

但有些钢,当温度达到某一温度后稳定化程度反而下降的现象。

15、热稳定化

淬火冷却时,因缓慢冷却或在冷却过程中于某一温度等温停留,引起的奥氏体稳定性提高,而使马氏体转变迟滞的现象,称为奥氏体的热稳定化。

16、机械稳定化

在Md以上的温度下,对奥氏体进行塑性变形,当变形量足够大时,可以使随后的马氏体转变困难,MS点降低,残余奥氏体量增多。

这种现象称为机械稳定化。

17、TTT曲线

是过冷奥氏体等温转变图,是描述过冷奥氏体等温转变形为,即等温温度、等温时间和转变产物的综合曲线。

18、应变诱发再结晶

在等温条件下,由于应力和应变不断增加而诱发的再结晶称为应变诱发再结晶。

19、原位形核

在原碳化物基础上发生成分变化和点阵重构,形成更稳定的碳化物。

20、独立形核

原碳化物回溶到母相中,而新的、更稳定的碳化物在其他部位重新形核长大。

21、二次硬化

通常淬火钢回火时,硬度随回火温度的升高是逐渐下降的,但当钢中含有某些特殊类型碳化物形成元素时,回火温度达到某一温度后,硬度反而随回火温度的升高而升高的现象,称为二次硬化。

22、第二类回火脆性

随回火温度的升高,冲击韧性反而下降的现象,称为“回火脆性”。

在450~650℃之间出现的回火脆称为第二类回火脆,也称为高温回火脆性。

23、回火抗力

在合金钢中,由于合金元素的作用,M分解温度将推向高温,即在较高温度下回火,仍然可以保持α相具有一定的过饱和度和细小的碳化物,使钢保持较高的强度和硬度。

通常把这种性质称为回火稳定性。

24、回火脆性

25、回火稳定性

或:

合金元素阻碍α相中碳含量的降低和碳化物颗粒长大,而使淬火钢在回火时保持高强度、高硬度的性质,称为回火稳定性。

26、抗回火性

27、人工时效

是指在较高温度下进行的时效,将固溶体合金固溶处理后,将其加热到某一温度,经保温后所发生的时效。

28、自然时效

是指在较低温度下进行的时效,一般是指室温下搁置时所发生的时效(将固溶体合金固溶处理后,在室温下放置所发生的时效)。

29、时效硬化

时效合金随第二相的析出,强度硬度升高而塑性下降的现象称为时效硬化。

 

30、调幅分解

某些固溶体合金,在一定条件下,能够不经过形核过程,分解为晶体结构相同成份在一定围连续变化的两相,即溶质原子富集与溶质原于贫化的两相,这种固态相变称为调幅分解。

二、符号的名称与意义

Mb马氏体爆发时形成温度,以Mb表示(Mb≤Ms)。

当奥氏体冷至Ms点以下时,瞬间

形成大量马氏体,并伴有响声,同时释放相变潜热,使温度上升

Md形变马氏体点,能够形成形变诱发马氏体转变的上限温度

Mf马氏体转变的终了温度,此温度发下奥氏体向马氏体转变将不再继续进行。

Mc奥氏体热稳定化的上限温度�超过此温度奥氏体将出现热稳定化现象。

Ms马氏体点、马氏体转变的开始温度、母相与马氏体两相的体积自由能之差达到相变所需最小驱动值时的温度。

Sv高碳片状马氏体显微裂纹敏感度,单位体积马氏体组织中,显微裂纹的面积。

θ滞后温度间隔度,奥氏体热稳定化程度,由于C、N原子钉札位错,而要求提供附加的化学驱动力以克服C、N原子的钉札力,为获得这个附加的化学驱动力所需的过冷度,即θ为值。

So片状珠光体的片间距离,即一片铁素体和一片渗碳体的总厚度,或相邻两片铁素体或渗碳体之间的中心距离。

Ad可获得形变奥氏体的最高温度。

三、简答题

1、何谓二次硬化和二次淬火?

以W18CrV钢的热处理工艺为例说明二者间的区别?

由于A´

本身的稳定性高或在P和B区之间A´

比较稳定的区域保持时,A´

可以不发生分解,而在随后冷却时转变为M,这种现象称为二次淬火。

通常淬火钢回火时,硬度随回火温度的升高是逐渐下降的,但当钢中含有某些特殊类型碳化物形成元素时,回火温度达到某一温度后,硬度反而随回火温度的升高而升高的现象,称为二次硬化。

W18Cr4V钢的正常热处理工艺为1280℃加热淬火,560℃1小时三次高温回火,淬火时由于奥氏体的稳定性较,组织中有大量的残余奥氏体,在回火时保温时残余奥氏体不发生分解,但是钢中含有W、V等碳化物形成元素,将由马氏体中析出大量弥散分布的碳化物,使钢的硬度升高,出现二次硬化。

而在随后劲的冷却过程中残余奥氏体将转变为马氏体,出现二次淬火。

可见二次硬化是在回火保温过程中由于特殊碳化物析出抽至�而二次淬火则是由于残余奥氏体在回火冷却过程中转变为马氏体所至。

2、钢在连续加热时珠光体向奥氏体转变有何特点?

1、在一定的加热速度围�临界点随加热速度增大而升高

2、相变是在一个温度围完成的

3、可以获得超细晶粒

4、钢中原始组织的不均匀使连续加热时的奥氏体化温度升高

5、快速连续加热时形成的奥氏体成分不均匀性增大Cr-a降低,Cr-cem升高。

6、在超快速加热条件下,铁素体转变为奥氏体的点阵改组属于无扩散型相变。

3、何谓奥氏体的本质、起始、实际晶粒度,刚在弥散析出的第二相对奥氏体的长大有何影响?

起始晶粒度:

指临界温度以上奥氏体形成刚刚完成�其晶粒边界刚刚互相接触时的晶粒大小。

实际晶粒度:

本质晶粒度:

是根据标准实验条件,在930±

10℃,保温足够时间(3~8小时)后,测定的钢中奥氏体晶粒的大小。

晶粒的长大主要表现为晶界的移动,高度弥散的、难熔的非金属或金属化合物颗粒对晶粒长大起很大的抑制作用,为了获得细小的奥氏体晶粒,必须保证钢中有足够数量和足够细小难熔的第二相颗粒。

4、钢中马氏体的晶体结构如何?

碳原子在马氏体点阵中的分布不马氏体点阵的正方度有何关系?

Fe-C合金的马氏体是C在中的过饱和间隙固溶体。

X-射线衍射分析证实�马氏体具有体心正方点阵。

通常假设马氏体点阵中的C原子优先占据八面体间隙位置的第点阵�即C原子平行于[001]方向排列。

结果使c轴伸长,a轴缩短,使体心立方点阵的α-Fe变成体心正方点阵的马氏体,研究说明,并不是所有的C原子都占据第点阵的位置,通过中子辐照分析的结论是近80%的C原子优先占据第点阵,而20%的C原子分布其他两个亚点阵,即在马氏体中,C原子呈部分有序分布。

5、简述珠光体的形貌特征?

片间距离不同的珠光体在光学显微镜和电子显微镜下的形态特征?

通常所说的珠光体是指在光学显微镜下能清楚分辨出片层状态的一类珠光体,而当片间距离小到一定程度后,光学显微镜就分辨不出片层的状态了。

根据片间距离的大小,通常把珠光体分为普通珠光体、索氏体和屈氏体。

普通珠光体P:

S0=1500~4500Å

,光学显微镜下能清晰分辨出片层结构。

索氏体S:

S0=800~1500Å

,光学显微镜下很难分辨出片层结构。

屈氏体T:

,光学显微镜下无法分辨片层结构。

但是在电子显微镜下观察各类片状珠光体是没有区别的�只是片间距离不同而已。

6、试从经典晶体学理论说明奥氏体向珠光体转变的动力学曲线具有“C”字形?

按经典结晶理论,奥氏体向珠光体转变是通过形核长大完成的。

奥氏体向珠光体转变时随过冷度增大临界形核功减小,这将促进奥氏体向珠光体转变,使转变的孕育期缩短,转变速度加快。

但是奥氏体向珠光体转变属于扩散型相变,而随温度的降低原子的活动下降,这又将阻碍奥氏体向珠光体的转变,使转变的孕育延长,转变速度下降。

两个影响因素互相矛盾,过冷度较小时,转变温度较高,临界形核功的变化起主导作用,随过冷度增大,孕育期缩短,当转变温度达到某一温度后碳原子扩散能力的影响将起主导作用,这又将使孕育期延长。

在这两个相互矛盾综合作用下使奥氏体向珠光体转变曲线呈现出“C”字形。

7、简述影响珠光体转变的动力学因素?

1、钢的在因素

(1)碳含量的影响�亚共析钢随碳含量的增加孕育期延长�过共析钢随碳含量增加孕育期缩短。

(2)合金元素的影响,自扩散的影响,对碳原子扩散速度的影响,改变了γ→α转变速度,改变了临界点,对γ/α相界面的拖曳作用

(3)奥氏体成分均匀性和过剩相溶解情况的影响�成分均匀、合金化程度高�孕育期长�转变速度下降。

(4)奥氏体晶粒度的影响�晶粒细小形核部位多�孕育期短转变速度快�

2、外界影响因素

(1)加热温度和保温时间的影响,温度高保温时间长奥氏体成分均匀,孕育期长,转变速度。

(2)应力和塑性变形的影响,在奥氏体状态下承受拉应力或进行塑性变形,有加速度珠光体转变的作用。

(3)等向压应力的影响,对奥氏体施加等向压应力,有降低珠光体形成温度、共析点移向低碳和减慢珠光体形成速度的作用。

8、过冷奥氏体连续冷却转变曲线有何特点和用途?

(1)、共析碳钢和过共析碳钢的连续冷却转变图,只有高温区的P转变和低温区的M转变,而无中温区的B转变,亚共析碳钢可以有B转变。

亚共析钢和过共析钢有先共析相F和Cem析出线,由于先共析相的析出,可以改变A的C含量,从而使随后在低温区发生M转变的Ms发生相应的变化。

(2)合金钢的CCT图,可以有P转变无B转变或只有B转变无P转变等多种不同的情况,具体的情况由加入的合金元素种类和数量而定。

(3)连续冷却转变曲线位于等温转变曲线的右下方。

这说明连续冷却转变的温度低,孕育期长。

(4)不论P转变

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1