普通高等学校招生全国统一考试理科数学新课标Ⅰ卷文档格式.doc
《普通高等学校招生全国统一考试理科数学新课标Ⅰ卷文档格式.doc》由会员分享,可在线阅读,更多相关《普通高等学校招生全国统一考试理科数学新课标Ⅰ卷文档格式.doc(9页珍藏版)》请在冰豆网上搜索。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束,将本试题和答题卡一并交回。
第Ⅰ卷
一、选择题:
本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x2-2x>0},B={x|-<x<},则 ( )
A、A∩B=Æ
B、A∪B=R C、B⊆A D、A⊆B
2、若复数z满足(3-4i)z=|4+3i|,则z的虚部为 ( )
A、-4 B- C4 D
3、为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )
A、简单随机抽样 B、按性别分层抽样 C、按学段分层抽样 D、系统抽样
4、已知双曲线C:
-=1(a>0,b>0)的离心率为,则C的渐近线方程为 ( )
A、y=±
x By=±
x Cy=±
x Dy=±
x
5、执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于( )
A、[-3,4]
B、[-5,2]
C、[-4,3]
D、[-2,5]
6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为()
A、cm3 B、cm3 C、cm3 D、cm3
7、设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=()
A、3 B、4 C、5 D、6
8、某几何函数的三视图如图所示,则该几何的体积为()
A、18+8πB、8+8π
C、16+16πD、8+16π
9、设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()
A、5 B、6 C、7 D、8
10、已知椭圆+=1(a>
b>
0)的右焦点为F(1,0),过点F的直线交椭圆于A、B两点。
若AB的中点坐标为(1,-1),则E的方程为( )
A、+=1 B、+=1
C、+=1 D、+=1
11、已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是( )
A、(-∞,0]B、(-∞,1]C、[-2,1]D、[-2,0]
12、设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,…
若b1>c1,b1+c1=2a1,an+1=an,bn+1=,cn+1=,则( )
A、{Sn}为递减数列 B、{Sn}为递增数列
C、{S2n-1}为递增数列,{S2n}为递减数列
D、{S2n-1}为递减数列,{S2n}为递增数列
第Ⅱ卷
本卷包括必考题和选考题两个部分。
第(13)题~第(21)题为必考题,每个考生都必须作答。
第(22)题~第(24)题为选考题,考生根据要求作答。
二.填空题:
本大题共四小题,每小题5分。
13、已知两个单位向量a,b的夹角为60°
,c=ta+(1-t)b,若b·
c=0,则t=_____.
14、若数列{an}的前n项和为Sn=an+,则数列{an}的通项公式是an=______.
15、设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=______
16、若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为______.
三.解答题:
解答应写出文字说明,证明过程或演算步骤。
17、(本小题满分12分)
如图,在△ABC中,∠ABC=90°
,AB=,BC=1,P为△ABC内一点,∠BPC=90°
(1)若PB=,求PA;
(2)若∠APB=150°
,求tan∠PBA
18、(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°
.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值。
19、(本小题满分12分)
一批产品需要进行质量检验,检验方案是:
先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。
如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;
如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;
其他情况下,这批产品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:
元),求X的分布列及数学期望。
20、(本小题满分12分)
已知圆M:
(x+1)2+y2=1,圆N:
(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
(21)(本小题满分共12分)
已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2
(Ⅰ)求a,b,c,d的值
(Ⅱ)若x≥-2时,f(x)≤kgf(x),求k的取值范围。
请考生在第(22)、(23)、(24)三题中任选一题作答。
注意:
只能做所选定的题目。
如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑。
(22)(本小题满分10分)选修4—1:
几何证明选讲
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点,垂直交圆于点。
(Ⅰ)证明:
;
(Ⅱ)设圆的半径为,,延长交于点,求外接圆的半径。
(23)(本小题10分)选修4—4:
坐标系与参数方程
已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求与交点的极坐标()。
(24)(本小题满分10分)选修4—5:
不等式选讲
已知函数,。
(Ⅰ)当时,求不等式的解集;
(Ⅱ)设,且当时,,求的取值范围。
2013年普通高等学校招生全国统一考试
理科数学答案
-9-