二次函数教学案例文档格式.docx

上传人:b****1 文档编号:15022469 上传时间:2022-10-26 格式:DOCX 页数:7 大小:21.18KB
下载 相关 举报
二次函数教学案例文档格式.docx_第1页
第1页 / 共7页
二次函数教学案例文档格式.docx_第2页
第2页 / 共7页
二次函数教学案例文档格式.docx_第3页
第3页 / 共7页
二次函数教学案例文档格式.docx_第4页
第4页 / 共7页
二次函数教学案例文档格式.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

二次函数教学案例文档格式.docx

《二次函数教学案例文档格式.docx》由会员分享,可在线阅读,更多相关《二次函数教学案例文档格式.docx(7页珍藏版)》请在冰豆网上搜索。

二次函数教学案例文档格式.docx

现有60米的篱笆要围成一个矩形场地,若矩形的长为10米,它的面积是多少?

若矩形的长分别为15米、20米、30米时,它的面积分别是多少?

从上两问同学们发现了什么?

教师提问后,学生可独立回答.在活动中,教师应重点关注:

学生是否能准确的建立函数关系;

学生是否能利用已学的函数知识求出最大面积;

学生是否能准确的讨论出自变量的取值范围.

  问题的设计,旨在运用函数模型让学生体会数学的实际价值,学会用函数的观点认识问题,解决问题,让学生在合作学习中共同解决问题,培养合作精神.最后,提出问题:

由矩形问题你有什么收获?

让学生经过短时间的讨论与思考后,师生共同归纳总结出函数解析式y=ax2+bx+c(a,b,c是常数,a≠0)的形式.在ppt上给出概念:

我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数.称a为二次项系数,b为一次项系数,c为常数项.通过层层设问,引导学生不断思考,积极探索,让学生感受到数学的应用价值,激发其学习的热情.

(3)利用图像激发兴趣.学习性质最好的方法就是根据图像来探索.例如,教师可以给出以下的问题,让学生进行自由探索:

填空:

根据下边已画好抛物线y=-2x2的顶点坐标是_____,对称轴是_____,在_____侧,即x_____0时,y随着x的增大而增大;

在_____侧,即x_____0时,y随着x的增大而减小.当x=_____时,函数y的最大值是____.当x____0时,y<0.教师让学生根据问题进行探究,并归纳出:

二次函数y=ax2+bx+c(a≠0)的图像和性质,顶点坐标与对称轴,位置与开口方向,增减性与最值.

  (4)小组合作探索二次函数与一元二次方程.教师向学生展示二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图像如图所示.

  

  教师引导学生以小组为单位,对以下问题进行合作探究:

每个图像与x轴有几个交点?

一元二次方程x2+2x=0,x2-2x+1=0有几个根?

验证一下一元二次方程x2-2x+2=0有根吗?

二次函数y=ax2+bx+c的图像和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?

并引导学生对二次函数y=ax2+bx+c的图像和x轴交点的三种情况进行归纳.

  三、教学反思与小结

  教学活动是建立在学生对已学函数理解的基础上,通过类比和探索的方式进行的.课堂开始时,对已学过的知识进行复习和总结,然后,给出简单的实际问题.接着笔者进一步将问题引申,加大难度,引出本节课所学习的内容,这一方法旨在激发学生的学习兴趣.通过几个简单的问题,让学生体会两个变量的关系.特别是在创设问题中,教师应重点关注学生是否发现变量,是否注意到取值范围,这个环节中简单问题的设计旨在激发学生的学习欲望.利用图像进行教学,是几何教学的一个重点内容.这个环节教师引导学生小组进行合作探究,在兴趣下去探求真知.本节课学生对二次函数的基本概念、图像有了比较扎实的认识,但是众观整个教学过程,笔者发现还存在不合理的地方,如还缺乏一些生动的教学方式激发学生学习的兴趣,在进行图像的教授过程中,教师可以利用多媒体进行动态的教学,课堂的结尾处教师还缺乏引导学生对二次函数知识的实际运用等.这些还需要教师不断地进行反思与发现,对教学方法进行不断改进与更新. 

《二次函数》复习课教学案例 

教学过程:

一、基础知识之自我构建

师:

今天我们来复习二次函数,先把课本知识归纳部分齐读一遍。

生:

齐读。

现在我把本章知识分类归纳成表格形式,请大家完成填空:

(展示课件)

完成填空。

师:

展示答案.

生:

纠正.

请思考函数y=(x-2)2-1并写出相关结论.同学们比一比,赛一赛,看谁写得多.

生1:

开口向上

生2:

对称轴:

直线x=2

生3:

顶点(2,-1)

生4:

图像是抛物线,且与y轴交点为(0,3)

生5:

抛物线与x轴两交点分别为(1,0)(3,0)

生6:

抛物线与x轴两交点之间距离为2

师归纳:

刚才同学们归纳的结论都正确,可见同学们对二次函数基础知识掌握得还是很到位的.下面老师提出的问题,相信同学们肯定能顺利地解决.

二、基础知识之基础演练

在投影幕上出示一组题目:

1、求将二次函数y=x2-2x图像向右平移1个单位,再向上平移2个单位后得到图像的函数表达式.

2、请写出一个二次函数解析式,使其图像的对称轴为x=1,并且开口向下.

3、请写出一个二次函数解析式,使其图象与x轴的交点坐标为(2,0)、(-1,0).

4、请写出一个二次函数解析式,使其图象与y轴的交点坐标为(0,2),且图象的对称轴在y轴的右侧.

学生思考3分钟后,教者开始提问

第1题,先求得抛物线的顶点坐标为(1,-1),平移后为(2,1),从而知道后来抛物线解析式为y=x2-4x+5.

第2题,设解析式y=a(x+1)(x-2),其中a≠0

刚才同学答案不对,题中要求写出一个具体的二次函数解析式,不妨设,则解析式为:

y=x2-x-2;

当然a可以取一个不等于0的任何实数.

很好,刚才学生做的这道题,我们有什么收获?

要认真审题.

由题意知,设解析式为y=ax2+bx+2,其中a,b异号即可,例如:

,即为y=x2-x-2.

投影幕上再出示第5、6两题:

5、如图,抛物线,

请判断下列各式的符号:

①a___0

②b___0

③c__0

④b2-4ac__0

6、如图,抛物线,

①abc__0

②2a-b__0

③a+b+c__0

④a-b+c__0

第5题,由图像可知:

抛物线开口向下,故a<

0,对称轴x=,故b>

0.抛物线与y轴交点(0,c)在y轴正半轴上,故c>

0,抛物线与x轴有两交点,故b2-4ac>

0.

第6题,由图像可知:

a>

0,b>

0,c<

0,故,对称轴=1,故2a-b<

0.横坐标为1的点在第一象限,故a+b+c>

0,横坐标为-1的点在第三象限,故a-b+c<

刚才两位同学发言很精彩,同学们要不要祝贺他们一下.(学生齐鼓掌)

现在老师要求每名同学都出一道类似第5、6题的题型,然后交给同座同学完成,做完后同座同学之间互相批阅一下.

三、基础知识之灵活运用

投影幕上出示题目,学生先思考,然后教者提问.

1、二次函数y=ax2+bx+c的图象如下图,

则方程ax2+bx+c=0的解为______________;

当x为__________时,a2-4ac>

0;

当x为___________时,a2-4ac<

2、关于x的一元二次方程x2-x-n=0无实数根,则抛物线y=x2-x-n的顶点在()

A.第一象限B.第二象限

C.第三象限D.第四象限

3、根据下列表格的对应值:

x

3.23

3.24

3.25

3.26

y=ax2+bx+c

-0.06

-0.02

0.03

0.09

不解方程,试判断方程ax2+bx+c=0(,a,b,c为常数)一个解x的范围是()

A、3<

x<

3.23B、3.23<

C、3.24<

3.25D、3.25<

生:

第1题,二次函数图像与x轴交点横坐标就是令y=0得到一元二次方程的解,从而方程解为x1=-3,x2=1,再由图象可知,当-3<

1,a2x+bx+c>

0时,,当x<

-3或x>

1时,a2x+bx+c<

第2题,由方程无实根说明抛物线与x轴无交点,再根据隐含条件对称轴在y轴右侧,故顶点在第一象限,从而选A.

本课诠释了二次函数与一元二次方程之间的紧密关系,以及数形结合思想的广泛应用.

由图表不难发现,当y=0时,-0.02<

y<

0.03,

从而3.24<

3.25,故选C.

刚才这一组题目告诉我们,善于抓住图象、图表特点,充分挖掘题中的隐含条件是解题的关键.

四、难点突破之思维激活

投影幕上出示一组题目:

1、已知抛物线的对称轴为x=2,且经过点(3,0),则a+b+c的值为.

2、已知抛物线经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点坐标是___________.

3、下图是抛物线的一部分,且经过点(-2,0),则下列结论中正确的个数有()

①a<

0;

②b<

③c>

④抛物线与x轴的另一个交点坐标可能是(1,0);

⑤抛物线与x轴的另一个交点坐标可能是(4,0).

A.2个B.3个C.4个D.5个

第1题,由题意得,由于两个方程中含有三个未知数,故此方程不可解,从而本题不好做.

同学们从抛物线的轴对称性入手,想想看

由对称性可知抛物线与x轴另一交点坐标(1,0),从而.

第2题,由A、B两点纵坐标相等可知A、B两点关于对称轴对称,从而对称轴,又因为C(3,-8),从而另一点就是C点关于直线对称点,即(1,8).

第3题中我能判断①③对,②错,④⑤无法判断.

谁来帮他一把

由顶点在第一象限可以画出草图,从而判断④肯定错,⑤可能对.从而选B.

五、难点突破之聚焦中考

投影幕上出示题目:

某商场销售一批名牌衬衫,平均每天可售出20件,进价是每件80元,售价是每件120元,为了扩大销售,增加盈利,减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降低1元,商场平均每天可多售出2件,但每件最低价不得低于1

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 院校资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1