大师特稿届高考数学理热点题型立体几何含答案.docx

上传人:b****3 文档编号:1499448 上传时间:2022-10-22 格式:DOCX 页数:10 大小:241.46KB
下载 相关 举报
大师特稿届高考数学理热点题型立体几何含答案.docx_第1页
第1页 / 共10页
大师特稿届高考数学理热点题型立体几何含答案.docx_第2页
第2页 / 共10页
大师特稿届高考数学理热点题型立体几何含答案.docx_第3页
第3页 / 共10页
大师特稿届高考数学理热点题型立体几何含答案.docx_第4页
第4页 / 共10页
大师特稿届高考数学理热点题型立体几何含答案.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

大师特稿届高考数学理热点题型立体几何含答案.docx

《大师特稿届高考数学理热点题型立体几何含答案.docx》由会员分享,可在线阅读,更多相关《大师特稿届高考数学理热点题型立体几何含答案.docx(10页珍藏版)》请在冰豆网上搜索。

大师特稿届高考数学理热点题型立体几何含答案.docx

大师特稿届高考数学理热点题型立体几何含答案

立体几何

热点一 空间点、线、面的位置关系及空间角的计算

空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第

(1)问,解答题的第

(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.

【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.

(1)求证:

平面PBD⊥平面COD;

(2)求直线PD与平面BDC所成角的正弦值.

(1)证明 ∵OB=OC,又∵∠ABC=,

∴∠OCB=,∴∠BOC=.

∴CO⊥AB.

又PO⊥平面ABC,

OC⊂平面ABC,∴PO⊥OC.

又∵PO,AB⊂平面PAB,PO∩AB=O,

∴CO⊥平面PAB,即CO⊥平面PDB.

又CO⊂平面COD,

∴平面PDB⊥平面COD.

(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.

设OA=1,则PO=OB=OC=2,DA=1.

则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),

∴=(0,-1,-1),=(2,-2,0),=(0,-3,1).

设平面BDC的一个法向量为n=(x,y,z),

∴∴

令y=1,则x=1,z=3,∴n=(1,1,3).

设PD与平面BDC所成的角为θ,

则sinθ=

==.

即直线PD与平面BDC所成角的正弦值为.

【类题通法】利用向量求空间角的步骤

第一步:

建立空间直角坐标系.

第二步:

确定点的坐标.

第三步:

求向量(直线的方向向量、平面的法向量)坐标.

第四步:

计算向量的夹角(或函数值).

第五步:

将向量夹角转化为所求的空间角.

第六步:

反思回顾.查看关键点、易错点和答题规范.

【对点训练】如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.

(1)证明:

EF∥B1C.

(2)求二面角EA1DB1的余弦值.

(1)证明 由正方形的性质可知A1B1∥AB∥DC,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C∥A1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.

(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以,,为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.

设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量=,=(0,1,-1),由n1⊥,

n1⊥得r1,s1,t1应满足的方程组

(-1,1,1)为其一组解,所以可取n1=(-1,1,1).

设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量=(1,0,0),=(0,1,-1),由此同理可得n2=(0,1,1).

所以结合图形知二面角EA1DB1的余弦值为

==.

热点二 立体几何中的探索性问题

此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:

(1)根据条件作出判断,再进一步论证;

(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.

【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.

(1)求证:

PD⊥平面PAB;

(2)求直线PB与平面PCD所成角的正弦值;

(3)在棱PA上是否存在点M,使得BM∥平面PCD?

若存在,求的值;若不存在,说明理由.

(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,

所以AB⊥平面PAD,所以AB⊥PD.

又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.

(2)解 取AD的中点O,连接PO,CO.

因为PA=PD,所以PO⊥AD.

因为PO⊂平面PAD,平面PAD⊥平面ABCD,

所以PO⊥平面ABCD.

因为CO⊂平面ABCD,所以PO⊥CO.

因为AC=CD,所以CO⊥AD.

如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).

设平面PCD的一个法向量为n=(x,y,z),则

令z=2,则x=1,y=-2.

所以n=(1,-2,2).

又=(1,1,-1),所以cos〈n,〉==-.

所以直线PB与平面PCD所成角的正弦值为.

(3)解 设M是棱PA上一点,则存在λ∈[0,1],使得=λ.

因此点M(0,1-λ,λ),=(-1,-λ,λ).

因为BM⊄平面PCD,所以要使BM∥平面PCD,

则·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.

所以在棱PA上存在点M,使得BM∥平面PCD,此时=.

【类题通法】

(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.

(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.

【对点训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.

(1)求证:

DE∥平面BPC;

(2)线段AB上是否存在一点F,满足CF⊥DB?

若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.

(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.

∵CN⊥AB,DA⊥AB,∴CN∥DA,

又AB∥CD,∴四边形CDAN为平行四边形,

∴CN=AD=8,DC=AN=6,

在Rt△BNC中,

BN===6,

∴AB=12,而E,M分别为PA,PB的中点,

∴EM∥AB且EM=6,又DC∥AB,

∴EM∥CD且EM=CD,四边形CDEM为平行四边形,

∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,

∴DE∥平面BPC.

(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以

D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,

则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).

假设AB上存在一点F使CF⊥BD,

设点F坐标为(8,t,0),

则=(8,t-6,0),=(8,12,0),

由·=0得t=.

又平面DPC的一个法向量为m=(1,0,0),

设平面FPC的法向量为n=(x,y,z).

又=(0,6,-8),=.

由得即

不妨令y=12,有n=(8,12,9).

则cos〈n,m〉===.

又由图可知,该二面角为锐二面角,

故二面角F-PC-D的余弦值为.

热点三 立体几何中的折叠问题

将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.

【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.

(1)证明:

D′H⊥平面ABCD;

(2)求二面角B-D′A-C的正弦值.

(1)证明 由已知得AC⊥BD,AD=CD.

又由AE=CF得=,故AC∥EF.

因此EF⊥HD,从而EF⊥D′H.

由AB=5,AC=6得DO=BO==4.

由EF∥AC得==.所以OH=1,D′H=DH=3.

于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.

又D′H⊥EF,而OH∩EF=H,

所以D′H⊥平面ABCD.

(2)解 如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H-xyz.

则H(0,0,0),A(-3,-1,0),

B(0,-5,0),C(3,-1,0),

D′(0,0,3),=(3,-4,0),=(6,0,0),=(3,1,3).

设m=(x1,y1,z1)是平面ABD′的一个法向量,

则即

所以可取m=(4,3,-5).

设n=(x2,y2,z2)是平面ACD′的一个法向量,

则即

所以可取n=(0,-3,1).

于是cos〈m,n〉===-.

sin〈m,n〉=.

因此二面角B-D′A-C的正弦值是.

【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.

【对点训练】如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.

(1)证明:

CD⊥平面A1OC;

(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.

(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,

从而BE⊥平面A1OC.

又CD∥BE,所以CD⊥平面A1OC.

(2)解 由已知,平面A1BE⊥平面BCDE,

又由

(1)知,BE⊥OA1,BE⊥OC,

所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.

如图,以O为原点,,,分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,

所以B,E,A1,C,

得=,=,==(-,0,0).

设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,

则得取n1=(1,1,1);

得取n2=(0,1,1),

从而cosθ=|cos〈n1,n2〉|==,

即平面A1BC与平面A1CD夹角的余弦值为.

 

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 入党转正申请

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1