光纤 资料大全Word文档格式.docx

上传人:b****2 文档编号:14975348 上传时间:2022-10-26 格式:DOCX 页数:28 大小:116KB
下载 相关 举报
光纤 资料大全Word文档格式.docx_第1页
第1页 / 共28页
光纤 资料大全Word文档格式.docx_第2页
第2页 / 共28页
光纤 资料大全Word文档格式.docx_第3页
第3页 / 共28页
光纤 资料大全Word文档格式.docx_第4页
第4页 / 共28页
光纤 资料大全Word文档格式.docx_第5页
第5页 / 共28页
点击查看更多>>
下载资源
资源描述

光纤 资料大全Word文档格式.docx

《光纤 资料大全Word文档格式.docx》由会员分享,可在线阅读,更多相关《光纤 资料大全Word文档格式.docx(28页珍藏版)》请在冰豆网上搜索。

光纤 资料大全Word文档格式.docx

因此,当时有很多科学家和发明家认为用玻璃纤维通信希望渺茫,失去了信心,放弃了光纤通信的研究。

  激光器和光纤的发明,使人们看到了光通信的曙光。

而要实现光纤通信,还需要在激光器和光纤的性能上有重大的突破。

但是在这两方面的突破遇到了许多困难,尤其是光纤的损耗要达到可用于通信的要求,从每千米损耗1000分贝降低到20分贝似乎不太可能,以致很多科学家对实现光纤通信失去了信心。

就在这种情况下,出生于上海的英藉华人高锟(,通过在英国标准电信实验室所作的大量研究的基础上,对光波通信作出了一个大胆的设想。

他认为,既然电可以沿着金属导线传输,光也应该可以沿着导光的玻璃纤维传输。

1966年7月,高锟就光纤传输的前景发表了具有重大历史意义的论文,论文分析了玻璃纤维损耗大的主要原因,大胆地预言,只要能设法降低玻璃纤维的杂质,就有可能使光纤的损耗从每公里1000分贝降低到20分贝/公里,从而有可能用于通信。

这篇论文使许多国家的科学家受到鼓舞,加强了为实现低损耗光纤而努力的信心。

  世界上第一根低损耗的石英光纤――1970年,美国康宁玻璃公司的三名科研人员马瑞尔、卡普隆、凯克成功地制成了传输损耗每千米只有20分贝的光纤。

这是什么概念呢?

用它和玻璃的透明程度比较,光透过玻璃功率损耗一半(相当于3分贝)的长度分别是:

普通玻璃为几厘米、高级光学玻璃最多也只有几米,而通过每千米损耗为20分贝的光纤的长度可达150米。

这就是说,光纤的透明程度已经比玻璃高出了几百倍!

在当时,制成损耗如此之低的光纤可以说是惊人之举,这标志着光纤用于通信有了现实的可能性。

1970年激光器和低损耗光纤这两项关键技术的重大突破,使光纤通信开始从理想变成可能,这立即引起了各国电信科技人员的重视,他们竞相进行研究和实验。

1974年美国贝尔研究所发明了低损耗光纤制作法――CVD法(汽相沉积法),使光纤损耗降低到1分贝/公里;

1977年,贝尔研究所和日本电报电话公司几乎同时研制成功寿命达100万小时(实用中10年左右)的半导体激光器,从而有了真正实用的激光器。

1977年,世界上第一条光纤通信系统在美国芝加哥市投入商用,速率为45Mb/s。

  进入实用阶段以后,光纤通信的应用发展极为迅速,应用的光纤通信系统已经多次更新换代。

70年代的光纤通信系统主要是用多模光纤,应用光纤的短波长(850纳米)波段,(1纳米=1000兆分之一米,即米)。

80年代以后逐渐改用长波长(1310纳米),光纤逐渐采用单模光纤,到90年代初,通信容量扩大了50倍,达到2.5Gb/s。

进入90年代以后,传输波长又从1310纳米转向更长的1550纳米波长,并且开始使用光纤放大器、波分复用(WDM)技术等新技术。

通信容量和中继距离继续成倍增长。

广泛地应用于市内电话中继和长途通信干线,成为通信线路的骨干。

光纤资料大全之光纤分类

光纤的种类很多,分类方法也是各种各样的。

从材料角度分

  按照制造光纤所用的材料分类,有石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤等。

  塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。

它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。

但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。

目前通信中普遍使用的是石英系光纤。

按传输模式分

  按光在光纤中的传输模式可分为:

单模光纤和多模光纤。

  多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。

光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。

光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。

80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。

多模光纤

  多模光纤(Multi 

Mode 

Fiber):

中心玻璃芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:

600MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

单模光纤

  单模光纤(Single 

中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。

这就是说在1.31μm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。

这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

最佳传输窗口为依据

  按最佳传输频率窗口分:

常规型单模光纤和色散位移型单模光纤。

  常规型:

光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。

  色散位移型:

光纤生产厂家将光纤传输频率最佳化在两个波长的光上,如:

1300μm和1550μm。

  我们知道单模光纤没有模式色散所以具有很高的带宽,那么如果让单模光纤工作在1.55μm波长区,不就可以实现高带宽、低损耗传输了吗?

但是实际上并不是这么简单。

常规单模光纤在1.31μm处的色散比在1.55μm处色散小得多。

这种光纤如工作在1.55μm波长区,虽然损耗较低,但由于色散较大,仍会给高速光通信系统造成严重影响。

因此,这种光纤仍然不是理想的传输媒介。

  为了使光纤较好地工作在1.55μm处,人们设计出一种新的光纤,叫做色散位移光纤(DSF)。

这种光纤可以对色散进行补偿,使光纤的零色散点从1.31μm处移到1.55μm附近。

这种光纤又称为1.55μm零色散单模光纤,代号为G653。

  G653光纤是单信道、超高速传输的极好的传输媒介。

现在这种光纤已用于通信干线网,特别是用于海缆通信类的超高速率、长中继距离的光纤通信系统中。

  色散位移光纤虽然用于单信道、超高速传输是很理想的传输媒介,但当它用于波分复用多信道传输时,又会由于光纤的非线性效应而对传输的信号产生干扰。

特别是在色散为零的波长附近,干扰尤为严重。

为此,人们又研制了一种非零色散位移光纤即G655光纤,将光纤的零色散点移到1.55μm 

工作区以外的1.60μm以后或在1.53μm以前,但在1.55μm波长区内仍保持很低的色散。

这种非零色散位移光纤不仅可用于现在的单信道、超高速传输,而且还可适应于将来用波分复用来扩容,是一种既满足当前需要,又兼顾将来发展的理想传输媒介。

  还有一种单模光纤是色散平坦型单模光纤。

这种光纤在1.31μm到1.55μm整个波段上的色散都很平坦,接近于零。

但是这种光纤的损耗难以降低,体现不出色散降低带来的优点,所以目前尚未进入实用化阶段。

按折射率分布分

  按折射率分布情况分:

阶跃型和渐变型光纤。

  阶跃型:

光纤的纤芯折射率高于包层折射率,使得输入的光能在纤芯一包层交界面上不断产生全反射而前进。

这种光纤纤芯的折射率是均匀的,包层的折射率稍低一些。

光纤中心芯到玻璃包层的折射率是突变的,只有一个台阶,所以称为阶跃型折射率多模光纤,简称阶跃光纤,也称突变光纤。

这种光纤的传输模式很多,各种模式的传输路径不一样,经传输后到达终点的时间也不相同,因而产生时延差,使光脉冲受到展宽。

所以这种光纤的模间色散高,传输频带不宽,传输速率不能太高,用于通信不够理想,只适用于短途低速通讯,比如:

工控。

但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

这是研究开发较早的一种光纤,现在已逐渐被淘汰了。

  为了解决阶跃光纤存在的弊端,人们又研制、开发了渐变折射率多模光纤,简称渐变光纤。

  渐变型光纤:

光纤中心芯到玻璃包层的折射率是逐渐变小,可使高次模的光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。

渐变光纤的包层折射率分布与阶跃光纤一样,为均匀的。

渐变光纤的纤芯折射率中心最大,沿纤芯半径方向逐渐减小。

由于高次模和低次模的光线分别在不同的折射率层界面上按折射定律产生折射,进入低折射率层中去,因此,光的行进方向与光纤轴方向所形成的角度将逐渐变小。

同样的过程不断发生,直至光在某一折射率层产生全反射,使光改变方向,朝中心较高的折射率层行进。

这时,光的行进方向与光纤轴方向所构成的角度,在各折射率层中每折射一次,其值就增大一次,最后达到中心折射率最大的地方。

在这以后。

和上述完全相同的过程不断重复进行,由此实现了光波的传输。

可以看出,光在渐变光纤中会自觉地进行调整,从而最终到达目的地,这叫做自聚焦。

按工作波长分

  按光纤的工作波长分类,有短波长光纤、长波长光纤和超长波长光纤。

常用光纤规格

  单模:

8/125μm, 

9/125μm, 

10/125μm

  多模:

50/125μm 

欧洲标准 

62.5/125μm 

美国标准

  工业,医疗和低速网络:

100/140μm, 

200/230μm

  塑料光纤:

98/1000μm 

用于汽车控制。

光纤制造

  目前通信中所用的光纤一般是石英光纤。

石英的化学名称叫二氧化硅(SiO2),它和我们日常用来建房子所用的砂子的主要成分是相同的。

但是普通的石英材料制成的光纤是不能用于通信的。

通信光纤必须由纯度极高的材料组成;

不过,在主体材料里掺入微量的掺杂剂,可以使纤芯和包层的折射率略有不同,这是有利于通信的。

  制造光纤的方法很多,目前主要有:

管内CVD(化学汽相沉积)法,棒内CVD法,PCVD(等离子体化学汽相沉积)法和VAD(轴向汽相沉积)法。

但不论用哪一种方法,都要先在高温下做成预制棒,然后在高温炉中加温软化,拉成长丝,再进行涂覆、套塑,成为光纤芯线。

光纤的制造要求每道工序都要相当精密,由计算机控制。

在制造光纤的过程中,要注意:

  ①光纤原材料的纯度必须很高。

  ②必须防止杂质污染,以及气泡混入光纤。

  ③要正确控制折射率的分布;

  ④正确控制光纤的结构尺寸;

  ⑤尽量减小光纤表面的伤痕损害,提高光纤机械强度。

光缆的优点

  光导纤维是一种传输光束的细微而柔韧的媒质。

光导纤维电缆由一捆光纤组成,简称为光缆

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1