五年级上册数学全册教案国标本苏教版Word下载.docx
《五年级上册数学全册教案国标本苏教版Word下载.docx》由会员分享,可在线阅读,更多相关《五年级上册数学全册教案国标本苏教版Word下载.docx(13页珍藏版)》请在冰豆网上搜索。
根据这一教学目标,本单元的教学内容分两部分编排:
第一部分是结合现实情境教学负数的意义,让学生初步认识负数,初步能认、读、写负数;
第二部分是负数的实际应用,引导学生应用正数和负数表示日常生活中具有相反意义的数量,进一步体会负数的意义。
练习一的第1~6题配合第一部分的教学,第7~10题配合第二部分的教学。
“你知道吗”介绍我国古代认识和使用负数的情况。
本单元结束时,还安排了一次实践活动《面积是多少》,回忆面积的意义、常用的面积单位、长方形面积计算公式,初步建立图形的等积变形思想,培养转化策略,为教学平行四边形等三个图形的面积打下扎实的基础。
1.联系温度和海拔高度的表示方法,初步教学负数的意义。
本单元教学负数的重点是理解它的意义,初步建立负数的概念。
生活中有许多具有相反意义的数量,如上升与下降的距离、收入与支出的金额、盈余与亏损的数量……怎样用数学的方法清楚、简便地表示并区分这些具有相反意义的数量?
于是人类发明了负数。
这些既是负数产生的历史过程,也是教学负数时可采用的素材。
本单元教学的第一部分,选择学生经常接触到的气温和具有形象特征的海拔高度为素材,帮助学生初步建立负数的概念。
(1)用负数表示低于零度的温度,学生首次感知负数。
例1精心选择三个城市同一天的最低气温,设计了“创设问题情境——讲解负数知识”的教学线索,让学生有意义地接受负数。
教材分三个环节编写:
第一是营造需要——用不同的数分别表示零上温度和零下温度;
第二是讲解负数的知识,包括正数和负数的表示方法和读、写;
第三是通过“试一试”巩固例题教学的知识。
教材通过精心选择的三个最低气温,营造教学负数的氛围。
南京的最低气温刚好是0摄氏度,上海的最低气温是零上4摄氏度,北京的最低气温是零下4摄氏度。
上海和北京的最低气温是两个不同概念的4摄氏度,怎样用数学的方法分别表示这两个温度,让人一看就明白而且不会发生混淆?
这就是教学负数的氛围。
为了营造这样的氛围,例题让学生联系各个城市图片右边的温度计说说“能知道些什么”,鼓励他们广泛地交流,包括看到的各个城市的具体气温以及由此想到的上海气温比0摄氏度高,北京气温比0摄氏度低等内容。
由此在学生内心产生一种需要:
寻找一种比较简便的方法,表示并区分上海与北京的不同气温。
教材把正数与负数结合在一起讲解,有利于突出负数的意义与表示方法,体会正数与负数分别表示具有相反意义的数量。
先讲零上4摄氏度与零下4摄氏度分别记作+4℃和-4℃,让学生清楚地看到它们使用了不同的表示方法。
再讲“+4”与“-4”的读法,并通过“+4也可以写成4”初步把以前学过的那些大于0的自然数与正数联系起。
“试一试”让学生独立写出香港、哈尔滨、西宁三个城市某一天的气温,其中两个城市的气温用负数表示,一个城市的气温用正数表示。
通过写出这些正数和负数,再次体会负数的意义,巩固在例题中教学的知识。
在教学用正数或负数表示温度的同时,还应教会学生看温度计上显示的温度。
如温度计上同时表示摄氏温度与华氏温度,我们生活中经常使用的是摄氏温度,它的标记是“℃”。
又如温度计上的零上温度要从零度刻度线往上看,每小格表示1度,每大格表示10度;
温度计上的零下温度要从零度刻度线往下看,也是每小格表示1度,每大格表示10度。
第7页第6题在温度计上表示某市2004年四个季度的平均气温,也是为了让学生学会看温度计而设计的。
(2)用正数或负数表示海拔高度,丰富对负数的感性认识。
例2用正数表示珠穆朗玛峰的海拔高度,用负数表示吐鲁番盆地的海拔高度。
虽然学生缺乏海拔高度的知识,但“高于海平面”“低于海平面”等概念形象具体,有利于学生体会正数和负数分别表示具有相反意义的数量。
例题采用“比海平面高”“比海平面低”这样的描述表达了珠穆朗玛峰和吐鲁番盆地的相对高度,用图画帮助学生理解词语的意思。
图中把海平面用一条红色虚线凸现,这样,什么是比海平面高、什么是比海平面低,以及需要不同的数表示和区分这两种数量就显而易见了。
通过用+8844米表示海拔8844米,用-155米表示海拔负155米,学生又一次联系实际体会到正数与负数的意义,他们对负数的感性认识就更丰富了。
这道例题里没有讲+8844、-155的读法,这是考虑到学生在前一道例题中已经初步学习了正数与负数的读法,这里把读数的机会留给了学生。
(3)初步揭示正数与负数的概念。
通过两道例题以及“试一试”的教学,已经认识了+4、-4、19、-11、-7、+8844、-155等数。
如果把这些数分成两类,那么可以把+4、19、+8844分在同一类,把-4、-11、-7、-155分在另一类。
教材告诉学生像前一类这样的数都是正数,像后一类这样的数都是负数,初步揭示了正数与负数的概念。
要注意的是,教材没有给正数、负数下定义,只是通过列举的方式让学生知道怎样的数是正数,怎样的数是负数。
并联系零上温度、比海平面高的高度都可以写成正数,零下温度、比海平面低的高度都可以写成负数,支持正数与负数概念的形成。
第3页“练一练”第1题,先读一读题中的6个数,再把这些数分别填入正数或负数的集合圈里。
可以在填写后让学生说一说,在两道例题里正数分别表示了什么样的数量,负数分别表示了什么样的数量,以加强对正数与负数的理解。
第6页第3题在写出5个正数与5个负数之后,也可以对学生提出类似的要求。
教材中的“0既不是正数,也不是负数。
正数都大于0,负数都小于0”这些知识不需要我们告诉学生,他们只要联系例题学习的体会完全能够自己得出,教学只要引一引就可以了。
这些知识也不需要机械记忆,学生自己得出的知识能够记住,并通过这些知识进一步理解负数的意义。
2.在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
本单元的第二部分以生活中常见的负数为教学内容,让学生体验并尝试在生活中应用负数,从而进一步理解负数的意义。
(1)两道例题设计了不同的教学方法。
例3呈现了一张反映新光服装店今年上半年每月盈亏情况的统计表,在“盈亏金额”栏里有正数,也有负数。
教学任务是让学生了解正数与负数在这道例题中分别表示的具体意义,看着统计表里的数据逐一分析各个月是盈利还是亏损,具体的钱数各是多少。
还可以分析这半年盈亏的整体状况,包括有几个月是盈余的,有几个月是亏损的……这道例题的教学方法是,先由教材告诉学生“通常情况下,盈利用正数表示,亏损用负数表示”这个规则,再由学生依据规则对统计表里的每个数据作出具体的解释。
从而体会正数和负数可以分别表示盈与亏这两种具有相反意义的数量。
例4呈现的是一幅平面图,学校在平面图的中心,它的东、西两个方向2100米处分别是邮局和公园,南、北两个方向1240米处分别是少年宫和超市。
这道例题的教学要求是让学生知道在相背运动时,如果一个方向行走的路程用正数表示,那么另一个方向行走的路程可以用负数表示。
“开放”是这道例题的特点,表现在两点上。
一是情境与问题有开放性。
小华从学校出发,沿东西方向的大街走2100米,到了什么地方?
这个问题有两个答案,即小华如果向东走,则到达邮局;
如果向西走,则到达公园。
同样,小华从学校出发,沿南北方向的大街走1240米,到达的地点也有超市或少年宫两种可能。
二是解决问题的方法有开放性。
在前面的几道例题中,用正数表示零上温度、高于海平面的高度、盈余金额,用负数表示零下温度、低于海平面的高度、亏损金额,这些几乎都是人们已经约定了的,在通常情况下大家都遵循这些表示的规则。
在本例中,朝哪个方向行走的路程记作正数,朝哪个方向行走的路程记作负数,一般没有约定,而是在解决问题时临时规定的。
如果把向东行走的米数记作正数,那么向西行走的米数就记作负数;
也可以把向西行走的米数记作正数,那么向东行走的米数就记作负数。
教材充分体现开放性的特点,首先是通过开放的问题情境:
小华沿东西方向大街走2100米“到了什么地方”,沿南北方向大街走1240“可以到哪里”,在学生中引发争议,使他们感受到可以用正数和负数区别表示相反方向运动的路程。
其次是允许并鼓励学生应用不同的表示规则。
在小华沿东西方向的大街行走时,“如果把向东走2100米记作+2100米,那么向西走2100米记作-2100米。
”为学生“把向西走2100米记作+2100米,向东走2100米记作-2100米”留出了空间。
在小华沿南北方向的大街行走的问题中,要求学生“根据行走的方向和路程,分别写出一个正数和一个负数”,赋予他们按自己的意愿确定表示规则的机会与条。
这样,学生对正数与负数能分别表示具有相反意义的数量会有更深切的体验。
(2)两次“试一试”提出了不同的认知要求。
第4页的“试一试”里,告诉学生新光服装店去年下半年每个月的盈利或亏损的金额,让他们在盈亏的情境中应用负数知识,加强“盈利通常用正数表示,亏损通常记作负数”的印象。
与例题相比,这次“试一试”在认知水平上没有提出更高的要求,仅是变换了思维的方向。
例题是根据“表示规则”体会统计表里各个正数与负数的具体含义,“试一试”是应用规则把具体现象用正数或负数表示在统计表里。
预计学生完成这次“试一试”一般不会有困难。
第5页的“试一试”对学生提出了两点要求:
一是写出数轴上的点所对应的数,其中有正数,也有负数。
通过写数与读数,尤其是数轴上正数与负数的位置,进一步体会正数与负数表示相反意义的数量,从而更好地理解负数的意义,巩固负数的知识。
二是看一看并想一想,-2接近0还是接近2,在数轴上初步感受数序。
和例题相比,在认知水平上提出了更高的要求,对各道例题教学的知识与思想方法适度地概括与提升。
教学这次“试一试”,要对这两个问题作细致的思考:
(1)怎样呈现数轴,使学生理解数轴上已有的0、1、2、4,以及-1、-2、-5等数的意义,有利于继续在方框里填出其他各数。
(2)怎样帮助学生初步体会数的排列顺序。
下面提供对这两个问题的教学设计,仅供参考。
“你会填一填、读一读吗”的教学可以分三步进行。
首先出现数轴,在它的上面有许多间距都相等的点,其中一个点的下面写出数“0”。
接着联系在例4中学到的用正数和负数表示相反方向运动的路程的经验(也可以联系其他例题中应用正、负数的经验),出现数轴上的其他已知数。
如果从“0”点出发,向东走1步、2步、4步,到达的位置用数轴上“0”右边的点及相应的数1、2、4表示,那么向西走1步、2步、5步,到达的位置应该用“0”左边的点及相应的-1、-2、-5表示。
给抽象的数以具体的含义,能帮助学生体会数轴上的点与数之间的对应关系。
然后再让学生写出四个框里的数,并说说自己的思考。
这样,学生不仅写出了这些数,还联系实际体会了这些数的意义。
联系数轴上的数初步体会数序也可以分三步进行。
首先仔细观察数轴上“0”的左边和右边分别是什么样的数,联系“正数都大于0、负数都小于0”体会这样分布的合理性。
然后仔细研究正数1、2、3……在数轴上的排列方向是从左往右,-1、-2、-3……在数轴上的排列方向是从右往左,也要联系实际体会这样排列的合理性。
最后是观察数轴上的数,回答“-2接近0还是接近2”这个问题,并简单解释其理由。
(3)联系已有的知识与经验,在练习中继续体会正数与负数表示的具体对象。