初三一轮复习学案图形的认识文档格式.docx

上传人:b****2 文档编号:14907982 上传时间:2022-10-25 格式:DOCX 页数:11 大小:187.33KB
下载 相关 举报
初三一轮复习学案图形的认识文档格式.docx_第1页
第1页 / 共11页
初三一轮复习学案图形的认识文档格式.docx_第2页
第2页 / 共11页
初三一轮复习学案图形的认识文档格式.docx_第3页
第3页 / 共11页
初三一轮复习学案图形的认识文档格式.docx_第4页
第4页 / 共11页
初三一轮复习学案图形的认识文档格式.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

初三一轮复习学案图形的认识文档格式.docx

《初三一轮复习学案图形的认识文档格式.docx》由会员分享,可在线阅读,更多相关《初三一轮复习学案图形的认识文档格式.docx(11页珍藏版)》请在冰豆网上搜索。

初三一轮复习学案图形的认识文档格式.docx

角平分线及其性质、判定;

线段垂直平分线及其性质判定。

2、易错点:

两点之间险段最短;

三、中考集锦:

1.如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线(  )

A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B

2.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为(  )

 

A.

2cm

B.

3cm

C.

4cm

D.

6cm

2.如图,点O在直线AB上,若∠1=40°

,则∠2的度数是(  )

50°

60°

140°

150°

3.下列图形中,∠1与∠2是对顶角的是(  )

4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°

,∠2=45°

,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(  )

15°

30°

45°

5.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是(  )

3

4

6

5

6.如图,把一块含有45°

的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°

,那么∠2的度数是(  )

A.15°

B.20°

C.25°

D.30°

7.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°

,则∠EPF=(  )度.

A.70B.65C.60D.55

8.如图,AB∥CD,∠A=56°

,∠C=27°

,则∠E的度数为      .

9.如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=      .

10.如图,在△ABC中,∠C=31°

,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=      °

11.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为(  )

A.B.C.D.1

四、典型例题

1.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.

(1)探究猜想:

①若∠A=30°

,∠D=40°

,则∠AED等于多少度?

②若∠A=20°

,∠D=60°

③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.

(2)拓展应用:

如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:

∠PEB,∠PFC,∠EPF的关系(不要求证明).

【考点】平行线的性质.

【分析】

(1)①根据图形猜想得出所求角度数即可;

②根据图形猜想得出所求角度数即可;

③猜想得到三角关系,理由为:

延长AE与DC交于F点,由AB与DC平行,利用两直线平行内错角相等得到一对角相等,再利用外角性质及等量代换即可得证;

(2)分四个区域分别找出三个角关系即可.

 

2.如图,在△ABC中,∠C=90°

,∠B=30°

,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=(  )

A.B.2C.3D.+2

【考点】角平分线的性质;

含30度角的直角三角形.

【分析】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°

的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.

3.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:

①OA=OD;

②AD⊥EF;

③当∠A=90°

时,四边形AEDF是正方形;

④AE+DF=AF+DE.

其中正确的是(  )

A.②③B.②④C.①③④D.②③④

全等三角形的判定与性质;

正方形的判定.

【分析】①如果OA=OD,则四边形AEDF是矩形,∠A=90°

,不符合题意,所以①不正确.

②首先根据全等三角形的判定方法,判断出△AED≌△AFD,AE=AF,DE=DF;

然后根据全等三角形的判定方法,判断出△AE0≌△AFO,即可判断出AD⊥EF.

③首先判断出当∠A=90°

时,四边形AEDF的四个角都是直角,四边形AEDF是矩形,然后根据DE=DF,判断出四边形AEDF是正方形即可.

④根据△AED≌△AFD,判断出AE=AF,DE=DF,即可判断出AE+DF=AF+DE成立,据此解答即可.

4.如图,在Rt△ABC中,∠ACB=90°

,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是(  )

A.B.4C.D.5

【考点】轴对称-最短路线问题.

【分析】过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC于点Q,由AD是∠BAC的平分线.得出PQ=PM,这时PC+PQ有最小值,即CM的长度,运用勾股定理求出AB,再运用S△ABC=AB•CM=AC•BC,得出CM的值,即PC+PQ的最小值.

5.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是  .

【考点】角平分线的性质.

【分析】首先根据CD平分∠ACB交AB于点D,可得∠DCE=∠DCF;

再根据DE⊥AC,DF⊥BC,可得∠DEC=∠DFC=90°

,然后根据全等三角形的判定方法,判断出△CED≌△CFD,即可判断出DF=DE;

最后根据三角形的面积=底×

高÷

2,求出△BCD的面积是多少即可.

五.历年中考热点

1.如图,△ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是(  )

A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长

2.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是(  )

A.如图1,展开后测得∠1=∠2

B.如图2,展开后测得∠1=∠2且∠3=∠4

C.如图3,测得∠1=∠2

D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD

3.如图,下列说法错误的是(  )

A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥c

C.若∠3=∠2,则b∥cD.若∠3+∠5=180°

,则a∥c

4.如图,AB∥CD,EF平分∠AEG,若∠FGE=40°

,那么∠EFG的度数为(  )

A.35°

B.40°

C.70°

D.140°

5.如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°

,则∠α的度数为(  )

25°

35°

6.将直尺和三角板按如图的样子叠放在一起,则∠1+∠2的度数是(  )

90°

180°

7.如图,把一块含有30°

角(∠A=30°

)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°

,那么∠AFE=(  )

40°

20°

10°

8.如图,直线a∥b,一块含60°

角的直角三角板ABC(∠A=60°

)按如图所示放置.若∠1=55°

,则∠2的度数为(  )

A.105°

B.110°

C.115°

D.120°

9.如图,AB∥EF,CD⊥EF,∠BAC=50°

,则∠ACD=(  )

A.120°

B.130°

C.140°

D.150°

10.如图,已知AB∥DE,∠ABC=70°

,∠CDE=140°

,则∠BCD的值为(  )

A.20°

B.30°

C.40°

D.70°

11.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°

,点B为劣弧AN的中点.P是直径MN上一动点,则PA+PB的最小值为(  )

1

2

12.如图,直线a、b相交于点O,∠1=50°

,则∠2= _________ 度.

13.如图,AB∥CD,∠1=62°

,FG平分∠EFD,则∠2= _________ .

14.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC=      .

15.如图,在Rt△ABC中,∠C=90°

,AD是△ABC的角平分线,DC=3,则点D到AB的距离是      .

16.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°

,则∠2= _________ °

17.如图,在Rt△ABC中,∠ACB=90°

,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是    

18.如图,在△ABC中,BC边的中垂线交BC于D,交AB于E.若CE平分∠ACB,∠B=40°

,则∠A=    度.

19.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为  .

20.如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为      .

21.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为    .

22.如图,四边形ABCD中,AC为∠BAD的角平分线,AB=AD,E、F两点分别在AB、AD上,且AE=DF.请完整说明为何四边形AECF的面积为四边形ABCD的一半.

23.如图,在Rt△ABC中,∠C=90°

,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.

(1)求证:

点O在∠BAC的平分线上;

(2)若AC=5,BC=12,求OE的长

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 商务科技

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1