成都市中考数学试题含答案解析Word文档下载推荐.docx
《成都市中考数学试题含答案解析Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《成都市中考数学试题含答案解析Word文档下载推荐.docx(29页珍藏版)》请在冰豆网上搜索。
A.﹣x5yB.x6yC.﹣x3y2D.x6y2
5.如图,l1∥l2,∠1=56°
,则∠2的度数为( )
A.34°
B.56°
C.124°
D.146°
6.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为( )
A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)
7.分式方程=1的解为( )
A.x=﹣2B.x=﹣3C.x=2D.x=3
8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:
分)及方差s2如表所示:
甲
乙
丙
丁
7
8
s2
1
1.2
1.8
如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( )
A.甲B.乙C.丙D.丁
9.二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )
A.抛物线开口向下B.抛物线经过点(2,3)
C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点
10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°
,AB=4,则的长为( )
A.πB.πC.πD.π
二、填空题:
本大题共4个小题,每小题4分,共16分
11.已知|a+2|=0,则a= .
12.如图,△ABC≌△A′B′C′,其中∠A=36°
,∠C′=24°
,则∠B= .
13.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1 y2(填“>”或“<”).
14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为 .
三、解答题:
本大共6小题,共54分
15.
(1)计算:
(﹣2)3+﹣2sin30°
+0
(2)已知关于x的方程3x2+2x﹣m=0没有实数解,求实数m的取值范围.
16.化简:
(x﹣)÷
.
17.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°
,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:
sin32°
≈0.53,cos32°
≈0.85,tan32°
≈0.62)
18.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
19.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
20.如图,在Rt△ABC中,∠ABC=90°
,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.
(1)求证:
△ABD∽△AEB;
(2)当=时,求tanE;
(3)在
(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.
四、填空题:
每小题4分,共20分
21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有 人.
22.已知是方程组的解,则代数式(a+b)(a﹣b)的值为 .
23.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB= .
24.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n= .
25.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°
,按下列步骤进行裁剪和拼图.
第一步:
如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;
第二步:
如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;
第三步:
如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).
则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为 .
五、解答题:
共3个小题,共30分
26.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.
(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;
(2)果园多种多少棵橙子树时,可使橙子的总产量最大?
最大为多少个?
27.如图①,△ABC中,∠ABC=45°
,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.
BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.
①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;
②如图③,当△EHF是由△BHD绕点H逆时针旋转30°
得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.
28.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:
7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?
若能,求出点N的坐标;
若不能,请说明理由.
参考答案与试题解析
【考点】有理数大小比较.
【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.
【解答】解:
∵|﹣3|=3,|﹣2|=2,
∴比﹣2小的数是:
﹣3.
故选:
A.
【考点】简单组合体的三视图.
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
从上面看易得横着的“”字,
故选C.
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×
10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;
当原数的绝对值<1时,n是负数.
181万=1810000=1.81×
106,
B.
【考点】幂的乘方与积的乘方.
【分析】首先利用积的乘方运算法则化简求出答案.
(﹣x3y)2=x6y2.
D.
【考点】平行线的性质.
【分析】根据平行线性质求出∠3=∠1=50°
,代入∠2+∠3=180°
即可求出∠2.
∵l1∥l2,
∴∠1=∠3,
∵∠1=56°
,
∴∠3=56°
∵∠2+∠3=180°
∴∠2=124°
【考点】关于x轴、y轴对称的点的坐标.
【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.
点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).
【考点】分式方程的解.
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
去分母得:
2x=x﹣3,
解得:
x=﹣3,
经检验x=﹣3是分式方程的解,
故选B.
【考点】方差;
算术平均数.
【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
因为乙组、丙组的平均数比甲组、丁组大,
而丙组的方差比乙组的小,
所以丙组的成绩比较稳定,
所以丙组的成绩较好且状态稳定,应选的组是丙组