七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx

上传人:b****1 文档编号:14759993 上传时间:2022-10-24 格式:DOCX 页数:11 大小:103.30KB
下载 相关 举报
七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx_第1页
第1页 / 共11页
七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx_第2页
第2页 / 共11页
七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx_第3页
第3页 / 共11页
七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx_第4页
第4页 / 共11页
七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx

《七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx(11页珍藏版)》请在冰豆网上搜索。

七年级数学下册43平行线的性质同步练习新版湘教版含答案Word格式文档下载.docx

B.35°

D.45°

5.)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°

,那么∠2的度数是(  )

A.20°

B.30°

C.35°

D.50°

6.将一张长方形纸片折叠成如图所示的形状,则∠ABC=(  )

A.73°

B.56°

C.68°

D.146°

7.某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°

,则∠FDC的度数是()

A.30°

B.45°

C.60°

D.75°

8.如图,直线a∥b,直线l分别与a、b相交于A、B两点,AC⊥a于点A,交直线b于点C.已知∠1=42°

,则∠2的度数是(  )

A.38°

B.42°

C.48°

D.58°

二、填空题(本大题共6小题)

9.如图,直线a∥b,∠1=45°

,∠2=30°

,则∠P=  °

10.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°

角的直角三角板的斜边与纸条一边重合,含45°

角的三角板的一个顶点在纸条的另一边上,则∠1的度数是  .

11.如图,AB∥CD,直线EF分别交AB、CD于M,N两点,将一个含有45°

角的直角三角尺按如图所示的方式摆放,若∠EMB=75°

,则∠PNM等于  度.

12.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°

,则∠2的度数为.

13.如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论中:

(1).∠EMB=∠END

(2)∠BMN=∠MNC(3)∠CNH=∠BPG(4)∠DNG=∠AME,其中正确的有。

14.如图,直线m∥n,∠1=70°

,∠2=30°

,则∠A等。

三、计算题(本大题共4小题)

15.如图,EF∥BC,AC平分∠BAF,∠B=80°

.求∠C的度数.

 

16.某次考古发掘出的一个梯形残缺玉片,工作人员从玉片上量得∠A=115°

,∠D=100°

,已知梯形的两底AD∥BC,请你帮助工作人员求出另外两个角的度数,并说明理由.

17.如图,AB∥CD,直线EF分别与AB,CD交于点G,H,∠1=50°

,求∠2和∠CHG的度数.

18.如图,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在AB上.

(1)试找出∠1,∠2,∠3之间的关系并说出理由;

(2)如果点P在A,B两点之间运动,问∠1,∠2,∠3之间的关系是否发生变化?

(3)如果点P在A,B两点外侧运动,试探究∠1,∠2,∠3之间的关系(点P和A,B不重合).

参考答案:

1.C

分析:

由两直线平行,同位角相等即可得出结果.

解:

∵a∥b,∠1=55°

∴∠2=∠1=55°

故选:

C.

2.C

由平行线的性质得出∠1+∠DFE=180°

,由对顶角相等求出∠DFE=∠2=80°

,即可得出结果.

∵AB∥CD,

∴∠1+∠DFE=180°

∵∠DFE=∠2=80°

∴∠1=180°

﹣80°

=100°

选:

C.

3.C

先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°

在△ABC中,

∵∠1=85°

∴∠4=85°

﹣35°

=50°

∵a∥b,

∴∠3=∠4=50°

故选C.

4.A

根据角平分线概念和两直线平行,同旁内角互补可求出∠ACD的度数.

∵AD平分∠BAC,∠BAD=70°

∴∠BAC=140°

∵AB∥CD,

∴∠ACD+∠BAC=180°

∠ACD=40°

,故选A.

5.C

由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.

∵AB⊥BC,

∴∠ABC=90°

∴∠3=180°

﹣90°

﹣∠1=35°

∴∠2=∠3=35°

6.A

根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC的度数.

∵∠CBD=34°

∴∠CBE=180°

﹣∠CBD=146°

∴∠ABC=∠ABE=∠CBE=73°

.故选A.

7.B

根据平行线性质延长BA,利用对顶角相等和两直线平行同位角相等即可得到答案.

延长BA与H,则∠EAB=∠HAD

又∵AB∥CD,则∠HAD=∠CDF

∴∠CDF=∠EAB=45°

,故选B。

8.C

先根据平行线的性质求出∠ACB的度数,再根据垂直的定义和余角的性质求出∠2的度数.

∵直线a∥b,

∴∠1=∠BCA,

∵∠1=42°

∴∠BCA=42°

∵AC⊥AB,

∴∠2+∠BCA=90°

∴∠2=48°

,故选C.

9.分析:

过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°

,∠FPM=∠1=45°

,即可求出答案.

过P作PM∥直线a,

∴直线a∥b∥PM,

∵∠1=45°

∴∠EPM=∠2=30°

∴∠EPF=∠EPM+∠FPM=30°

+45°

=75°

故答案为:

75.

10.分析:

过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°

,加上∠2+∠3=45°

,易得∠1=15°

如图,过A点作AB∥a,

∴∠1=∠2,

∴AB∥b,

∴∠3=∠4=30°

而∠2+∠3=45°

∴∠2=15°

∴∠1=15°

故答案为15°

11.分析:

根据平行线的性质得到∠DNM=∠BME=75°

,由等腰直角三角形的性质得到∠PND=45°

,即可得到结论.

∴∠DNM=∠BME=75°

∵∠PND=45°

∴∠PNM=∠DNM﹣∠DNP=30°

30.

12.分析:

首先过点D作DE∥a,由∠1=60°

,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.

过点D作DE∥a,

∵四边形ABCD是矩形,

∴∠BAD=∠ADC=90°

∴∠3=90°

﹣∠1=90°

﹣60°

=30°

∴DE∥a∥b,

∴∠4=∠3=30°

,∠2=∠5,

∴∠2=90°

﹣30°

=60°

13.分析:

根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论.

(1)、∵AB∥CD,

∴∠EMB=∠END(两直线平行,同位角相等);

(2)、∵AB∥CD,

∴∠BMN=∠MNC(两直线平行,内错角相等);

(3)、∵AB∥CD,

∴∠CNH=∠MPN(两直线平行,同位角相等),

∵∠MPN=∠BPG(对顶角),

∴∠CNH=∠BPG(等量代换);

(4)、∠DNG与∠AME没有关系,无法判定其相等.故答案为

(1)

(2)(3).

14.分析:

利用平行线的性质解答即可。

∵m∥n,∴∠3=∠1=70°

.∵∠3是△ABD的一个外角,∴∠3=∠2+∠A.∴∠A=∠3-∠2=70°

-30°

=40°

.

15.分析:

根据两直线平行,同旁内角互补求出∠BAF,再根据角平分线的定义求出∠CAF,然后根据两直线平行,内错角相等解答.

∵EF∥BC,

∴∠BAF=180°

﹣∠B=100°

∵AC平分∠BAF,

∴∠CAF=∠BAF=50°

∴∠C=∠CAF=50°

16.分析:

直接根据平行线的性质即可得出结论.

∵AD∥BC,∠A=115°

∴∠B=180°

-∠A=180°

-115°

=65°

∠C=180°

-∠D=180°

-100°

=80°

17.解:

∴∠DHE=∠1=50°

.

∵∠2=∠DHE,

∴∠2=∠1=50°

∵∠2+∠CHG=180°

∴∠CHG=180°

-∠2=130°

18.解:

(1)∠1+∠2=∠3.

理由:

过点P作l1的平行线PQ.

∵l1∥l2,

∴l1∥l2∥PQ.

∴∠1=∠4,∠2=∠5.

∵∠4+∠5=∠3,

∴∠1+∠2=∠3.

(2)∠1+∠2=∠3不变.

(3)∠1-∠2=∠3或∠2-∠1=∠3.

①当点P在下侧时,如图,过点P作l1的平行线PQ.

∴∠2=∠4,∠1=∠3+∠4.

∴∠1-∠2=∠3.

②当点P在上侧时,同理可得∠2-∠1=∠3.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 设计艺术

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1