全国各地中考数学压轴题汇编函数江苏专版解析卷Word文档下载推荐.docx
《全国各地中考数学压轴题汇编函数江苏专版解析卷Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《全国各地中考数学压轴题汇编函数江苏专版解析卷Word文档下载推荐.docx(24页珍藏版)》请在冰豆网上搜索。
当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?
解:
(1)由题意:
当2000≤x≤2600时,y=10x﹣6(2600﹣x)=16x﹣15600;
当2600<x≤3000时,y=2600×
10=26000
(2)由题意得:
16x﹣15600≥22000
x≥2350
∴当A酒店本月对这种水果的需求量小于等于3000,不少于2350kg时,该水果店销售这批水果所获的利润不少于22000元.
3.(2018•连云港)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.
(1)求k2,n的值;
(2)请直接写出不等式k1x+b的解集;
(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.
(1)将A(4,﹣2)代入y=,得k2=﹣8.
∴y=﹣
将(﹣2,n)代入y=﹣
n=4.
∴k2=﹣8,n=4
(2)根据函数图象可知:
﹣2<x<0或x>4
(3)将A(4,﹣2),B(﹣2,4)代入y=k1x+b,得k1=﹣1,b=2
∴一次函数的关系式为y=﹣x+2
与x轴交于点C(2,0)
∴图象沿x轴翻折后,得A′(4,2),
S△A'
BC=(4+2)×
(4+2)×
﹣×
4×
4﹣×
2×
2=8
∴△A'
BC的面积为8.
4.(2018•南京)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中.设小明出发第tmin时的速度为vm/min,离家的距离为sm,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).
(1)小明出发第2min时离家的距离为 200 m;
(2)当2<t≤5时,求s与t之间的函数表达式;
(3)画出s与t之间的函数图象.
(1)100×
2=200(m).
故小明出发第2min时离家的距离为200m;
(2)当2<t≤5时,s=100×
2+160(t﹣2)=160t﹣120.
故s与t之间的函数表达式为160t﹣120;
(3)s与t之间的函数关系式为,
如图所示:
故答案为:
200.
5.(2018•无锡)已知:
如图,一次函数y=kx﹣1的图象经过点A(3,m)(m>0),与y轴交于点B.点C在线段AB上,且BC=2AC,过点C作x轴的垂线,垂足为点D.若AC=CD.
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线CD为对称轴的抛物线经过点A,它的顶点为P,若过点P且垂直于AP的直线与x轴的交点为Q(﹣,0),求这条抛物线的函数表达式.
(1)过点A作AF⊥x轴,过点B作BF⊥CD于H,交AF于点F,过点C作CE⊥AF于点E
设AC=n,则CD=n
∵点B坐标为(0,﹣1)
∴CD=n+1,AF=m+1
∵CH∥AF,BC=2AC
∴
即:
整理得:
n=
Rt△AEC中,
CE2+AE2=AC2
∴5+(m﹣n)2=n2
把n=代入
5+(m﹣)2=()2
解得m1=5,m2=﹣3(舍去)
∴n=3
∴把A(3,5)代入y=kx﹣1得
k=
∴y=x﹣1
(2)如图,过点A作AE⊥CD于点E
设点P坐标为(2,n),由已知n>0
由已知,PD⊥x轴
∴△PQD∽△APE
解得n1=7,n2=﹣2(舍去)
设抛物线解析式为y=a(x﹣h)2+k
∴y=a(x﹣2)2+5
把A(3,5)代入y=a(x﹣2)2+7
解得a=﹣
∴抛物线解析式为:
y=﹣
6.(2018•淮安)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.
(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(﹣2,6)、C(1,3)代入y=kx+b,
得:
,
.
(2)当y=0时,有﹣x+4=0,
x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m)(m<0),
∵S△COD=S△BOC,即﹣m=×
×
3,
m=﹣4,
∴点D的坐标为(0,﹣4).
7.(2018•连云港)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:
购买数量低于5000块
购买数量不低于5000块
红色地砖
原价销售
以八折销售
蓝色地砖
以九折销售
如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;
如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.
(1)红色地砖与蓝色地砖的单价各多少元?
(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?
请说明理由.
(1)设红色地砖每块a元,蓝色地砖每块b元,由题意可得:
答:
红色地砖每块8元,蓝色地砖每块10元;
(2)设购置蓝色地砖x块,则购置红色地砖(12000﹣x)块,所需的总费用为y元,
由题意可得:
x≥(12000﹣x),
x≥4000,
又x≤6000,
所以蓝砖块数x的取值范围:
4000≤x≤6000,
当4000≤x<5000时,
y=10x+×
0.8(12000﹣x)
=76800+3.6x,
所以x=4000时,y有最小值91200,
当5000≤x≤6000时,y=0.9×
10x+8×
0.8(1200﹣x)=2.6x+76800,
所以x=5000时,y有最小值89800,
∵89800<91200,
∴购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.
8.(2018•淮安)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;
当每件的销售价每增加1元,每天的销售数量将减少10件.
(1)当每件的销售价为52元时,该纪念品每天的销售数量为 180 件;
(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?
并求出最大利润.
(1)由题意得:
200﹣10×
(52﹣50)=200﹣20=180(件),
180;
y=(x﹣40)[200﹣10(x﹣50)]
=﹣10x2+1100x﹣28000
=﹣10(x﹣55)2+2250
∴每件销售价为55元时,获得最大利润;
最大利润为2250元.
9.(2018•盐城)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若降价3元,则平均每天销售数量为 26 件;
(2)当每件商品降价多少元时,该商店每天销售利润为1200元?
(1)若降价3元,则平均每天销售数量为20+2×
3=26件.
故答案为26;
(2)设每件商品应降价x元时,该商店每天销售利润为1200元.
根据题意,得(40﹣x)(20+2x)=1200,
整理,得x2﹣30x+200=0,
x1=10,x2=20.
∵要求每件盈利不少于25元,
∴x2=20应舍去,
x=10.
每件商品应降价10元时,该商店每天销售利润为1200元.
10.(2018•淮安)如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.
(1)当t=秒时,点Q的坐标是 (4,0) ;
(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;
(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.
(1)令y=0,
∴﹣x+4=0,
∴x=6,
∴A(6,0),
当t=秒时,AP=3×
=1,
∴OP=OA﹣AP=5,
∴P(5,0),
由对称性得,Q(4,0);
故答案为(4,0);
(2)当点Q在原点O时,OQ=6,
∴AP=OQ=3,
∴t=3÷
3=1,
①当0<t≤1时,如图1,
令x=0,
∴y=4,
∴B(0,4),
∴OB=4,
∵A(6,0),
∴OA=6,
在Rt△AOB中,tan∠OAB==,
由运动知,AP=3t,
∴P(6﹣3t,0),
∴Q(6﹣6t,0),
∴PQ=AP=3t,
∵四边形PQMN是正方形,
∴MN∥OA,PN=PQ=3t,
在Rt△APD中,tan∠OAB===,
∴PD=2t,
∴DN=t,
∵MN∥OA
∴∠DCN=∠OAB,
∴tan∠DCN===,
∴CN=t,
∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×
t=t2;
②当1<t≤时,如图2,
同①的方法得,DN=t,CN=t,
∴S=S矩形OENP﹣S△CDN=3t×
(6﹣3t)﹣t×
t=﹣t2+18t;
③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;
(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),
∴M(6﹣6t,3t),
∵T是正方形PQMN的对角线交点,
∴T(6﹣t,t),
∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),
同理:
点N是直线AG:
y=﹣x+6上的一段线段,(0≤x≤6),
∴G(0,6),
∴OG=6,
∴AB=6,
∵T正方形PQMN的对角线的交点,
∴TN=TP,
∴OT+TP=OT+TN,
∴点O,T,N在同一条直线上,且ON⊥AG时,OT+TN最小,
OT+TN最小,