实数考点及题型Word格式.doc
《实数考点及题型Word格式.doc》由会员分享,可在线阅读,更多相关《实数考点及题型Word格式.doc(7页珍藏版)》请在冰豆网上搜索。
a的立方根表示为
无理数:
无限不循环小数
有理数
分数
整数
有限小数
无限循环小数
一、知识性专题
专题1无理数与有理数的有关问题
例1在-2,0,,1,,-0.4中,正数有()
A.2个B.3个C.4个 D.5个
例2 请写出两个你喜欢的无理数,使它们的和为有理数,你写的两个无理数是 .
专题2 平方根、立方根的概念
例3要到玻璃店配一块面积为1.21m2的正方形玻璃,那么该玻璃的边长为 m.
例4 计算.
例5已知b=a3+2c,其中b的算术平方根为19,c的平方根是±
3,求a的值.
专题3实数的有关概念及计算
例6 把下列各数分别填入相应的集合里:
,,-3.14159,,,,,0,-0.,1.414,,1.2112111211112…(每两个相邻的2中间依次多1个1).
(1)正有理数集合:
{…};
(2)有理数集合:
{…};
(3)无理数集合:
{…};
(4)实数集合:
{…}.
例7如图13-13所示,在数轴上点A和B之间的整数点有 __个.
例8已知a,b为数轴上的点,如图13-14所示,求的值.
专题4非负数的性质及其应用
例9 若与互为相反数,则的值为 .
例10 已知a,b,c都是实数,且满足(2-a)2+=0,且ax2+bx+c=0,求代数式3x2+6x+1的值.
例11已知实数x,y满足,求的平方根.
例12 若a,b为实数,且,求的值.
二、规律方法专题
专题5 实数比较大小的方法
1.平方法
当a>0,b>0时,a>b.
例13比较和的大小.
2.移动因数法
利用a=(a≥0),将根号外的因数移到根号内,再比较被开方数的大小.
例14比较和的大小.
3.作差法
当a-b=0时,可知a=b;
当a-b>0时,可知a>b;
当a-b<0时,可知a<b.
例15 比较与的大小.
4.作商法
若,则A=B;
若>1.则A>B;
若<1.则A<B.(A,B>0且B≠0)
例16比较和的大小.
三、思想方法专题
专题6 分类讨论思想
【专题解读】 当被研究的问题包含多种可能情况,不能一概而论时,应按所有可能的情况分别讨论.实数的分类是这一思想的具体体现.要学会运用分类讨论思想对可能存在的情况进行分类讨论.要不重不漏.本章在研究平方根、立方根及算术平方根的性质以及化简绝对值时均用到了分类讨论思想.
例17 已知数轴上有A,B两点,且这两点之间的距离为,若点A在数轴上表示的数为,则点B在数轴上表示的数为 .
专题7 数形结合思想
【专题解读】实数与数轴上的点是一一对应的,实数在数轴上的表示是数形结合思想的具体表现,通过把实数在数轴上直观地表示出来,可以形象、直观地感受实数的客观存在.为理解实数的概念及其相关性质提供了有力的帮助.
例18 a,b在数轴上的位置如图13-15所示,那么化简的结果是()
A.2a-b B.b
C.-b D.-2a+b
专题8 类比思想
【专题解读】本章在学习实数的有关概念及性质、运算时,可以类比已学过的有理数加以理解和运用.
例19 已知四个命题:
①如果一个数的相反数等于它本身,那么这个数是0;
②若一个数的倒数等于它本身,则这个数是1;
③若一个数的算术平方根等于它本身,则这个数是1或0;
④如果一个数的绝对值等于它本身.那么这个数是正数.其中真命题有()
A.1个 B.2个 C.3个 D.4个
例20 设a为实数,则的值()
A.可以是负数B.不可能是负数
C.必是正数D.正数、负数均可
中考题精选
1.设,a在两个相邻整数之间,则这两个整数是( )
A、1和2B、2和3C、3和4D、4和5
2.(2011•宁夏,10,3分)数轴上A、B两点对应的实数分别是和2,若点A关于点B的对称点为点C,则点C所对应的实数为
3.(2011山西,13,3分)计算:
4.(2011贵州毕节,18,5分)对于两个不相等的实数、,定义一种新的运算如下,
,如:
,那么=。
5.(2010重庆,17,6分)计算:
|-3|+(-1)2011×
(π-3)0-+
6.已知为有理数,分别表示的整数部分和小数部分,且,则.
作业
一、选择题(每小题3分,共30分)
1.的平方根是()
A.81 B.±
3 C.3 D.-3
2.计算的结果是()
A.9 B.-9C.3 D.-3
3.与最接近的两个整数是()
A.1和2B.2和3C.3和4D.4和5
4.如图13-16所示,数轴上的点P表示的数可能是()
A.B.-
C.-3.8 D.-
5.下列实数中,是无理数的为()
A.3.14B.C. D.
6.的平方的立方根的相反数为()
A.4B.C.D.
7.的算术平方根是()
A.8B.±
8C.D.
8.如图13-17所示,数轴上A,B两点表示的数分别为-1和,点B关于点A的对称点为C,则点C所表示的数为()
A.-2-B.-1-
C.-2+ D.1+
9.已知a,b为实数,则下列命题中,正确的是()
A.若a>b,则a2>b2B.若a>,则a2>b2
C.若<b,则a2>b2D.若>3,则a2<b2
10.下列说法中,正确的是()
A.两个无理数的和是无理数
B.一个有理数与一个无理数的和是无理数
C.两个无理数的积还是无理数
D.一个有理数与一个无理数的积是无理数
二、填空题(每小题3分,共30分)
11.已知a为实数,那么等于.
12.已知一个正数的两个平方根分别是3x-2和5x+6,则这个数是 .
13.若x3=64,则x的平方根为 .
14.若5是a的平方根,则a= ,a的另一个平方根是 .
15.的相反数为 .
16.若,则x= .
17.若m<0.则化简= .
18.若,则x= .
19.设a,b为有理数,且,则ab的值为 .
20.若对应数轴上的点A,-对应数轴上的点B,那么A,B之间的距离为 .
三、解答题(每小题10分,共60分)
21.已知x,y满足y<,化简.
22.已知9x2-16=0,且x是负数,求的值.
23.设2+的小数部分是a,求a(a+2)的值.
24.计算.
25.用48米长的篱笆在空地上围一个绿化场地,现有两种设计方案:
一种是围成正方形场地;
另一种是围成圆形场地.选用哪一种方案围成的场地的面积较大?
并说明理由.
26.已知△ABC三边长分别为a,b,c,且满足,试求c的取值范围.