初中数学教学设计优秀案例(一)Word格式文档下载.doc
《初中数学教学设计优秀案例(一)Word格式文档下载.doc》由会员分享,可在线阅读,更多相关《初中数学教学设计优秀案例(一)Word格式文档下载.doc(10页珍藏版)》请在冰豆网上搜索。
二元一次方程及其解的概念。
教学难点:
二元一次方程的概念里“含未知数的项的次数”的理解;
把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。
四、教法与学法分析
教法:
情境教学法、比较教学法、阅读教学法。
学法:
阅读、比较、探究的学习方式。
五、教学过程
1.创设情境,引入新课
从学生熟悉的姚明受伤事件引入。
师:
火箭队最近取得了20连胜,姚明参加了前面的12场比赛,是球队的顶梁柱。
(1)连胜的第12场,火箭对公牛,在这场比赛中,姚明得了12分,其中罚球得了2分,你知道姚明投中了几个两分球?
(本场比赛姚明没投中三分球)
能用方程解决吗?
列出来的方程是什么方程?
(2)连胜的第1场,火箭对勇士,在这场比赛中,姚明得了36分,你知道姚明投中了几个两分球,罚进了几个球吗?
(罚进1球得1分,本场比赛姚明没投中三分球)
这个问题能用一元一次方程解决吗?
你能列出方程吗?
设姚明投进了x个两分球,罚进了y个球,可列出方程______。
(3)在雄鹿队与火箭队的比赛中易建联全场总共得了19分,其中罚球得了3分。
你知道他分别投进几个两分球、几个三分球吗?
设易建联投进了x个两分球,y个三分球,可列出方程______。
对于所列出来的三个方程,后面两个你觉的是一元一次方程吗?
那这两个方程有什么相同点吗?
你能给它们命一个名称吗?
从而揭示课题。
(设计意图:
第一个问题主要是让学生体会一元一次方程是解决实际问题的数学模型,从而回顾一元一次方程的概念;
第二、三问题设置的主要目的是让学生体会到当实际问题不能用一元一次方程来解决的时候,我们可以试着列出二元一次方程,渗透方程模型的通用性。
另外,数学来源于生活,又应用于生活,通过创设轻松的问题情境,点燃学习新知识的“导火索”,引起学生的学习兴趣,以“我要学”的主人翁姿态投入学习,而且“会学”“乐学”。
)
2.探索交流,汲取新知
概念思辨,归纳二元一次方程的特征
那到底什么叫二元一次方程?
(学生思考后回答)
翻开书本,请同学们把这个概念划起来,想一想,你觉得和我们自己归纳出来的概念有什么区别吗?
(同学们思考后回答)
根据概念,你觉得二元一次方程应具备哪几个特征?
活动:
你自己构造一个二元一次方程。
快速判断:
下列式子中哪些是二元一次方程?
①x2+y=0②y=2x+4
③2x+1=2-x④ab+b=4
这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数”的思考,进而完善学生对二元一次方程概念的理解,通过学生自己举例子的活动去把“项的次数”形象化。
二元一次方程解的概念
前面列的两个方程2x+y=36,2x+3y=16真的是二元一次方程吗?
通过方程2x+3y=16,你知道易建联可能投中几个两分球,几个三分球吗?
师:
你是怎么考虑的?
(让学生说说他是如何得到x和y的值的,怎么证明自己的这对未知数的取值是对的)
利用一个学生合理的解释,引导学生类比一元一次方程的解的概念,让学生归纳出二元一次方程的解的概念及其记法。
(学生看书本上的记法)
使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
通过引导学生自主取值,猜x和y的值,从而更深刻的体会二元一次方程解的本质:
使方程左右两边相等的一对未知数的取值。
引导学生看书本,目的是让学生在记法上体会“一对未知数的取值”的真正含义。
二元一次方程解的不唯一性
对于2x+3y=16,你觉得这个方程还有其它的解吗?
你能试着写几个吗?
这些解你们是如何算出来的?
设计此环节,目的有三个:
首先,是让学生学会如何检验一对未知数的取值是二元一次方程的解;
其次是让学生体会到二元一次方程的解的不唯一性;
最后让学生感受如何得到一个正确的解:
只要取定一个未知数的取值,就可以代入方程算出另一个未知数的值,这也就是求二元一次方程的解的方法。
如何去求二元一次方程的解
例:
已知方程3x+2y=10,
(1)当x=2时,求所对应的y的值;
(2)取一个你自己喜欢的数作为x的值,求所对应的y的值;
(3)用含x的代数式表示y;
(4)用含y的代数式表示x;
(5)当x=-2,0时,所对应的y的值是多少?
(6)写出方程3x+2y=10的三个解.
此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程,实质是解一个关于y的一元一次方程,渗透数学的主元思想。
以此突破本节课的难点。
大显身手:
课内练习第2题
梳理知识,课堂升华
本节课你有收获吗?
能和大家说说你的感想吗?
3.作业布置
必做题:
书本作业题1、2、3、4。
选做题:
书本作业题5、6。
设计说明
本节授课内容属于概念课教学。
数学学科的内容有其固有的组成规律和逻辑结构,它总是由一些最基本的数学概念作为核心和逻辑起点,形成系统的数学知识,所以数学概念是数学课程的核心。
只有真正理解数学概念,才能理解数学。
二元一次方程作为初中阶段接触的第二类方程,形成概念并不难,关键如何理解它的概念,因此本节课采用先让同学自己试着下定义,然后与教材中的完整定义相互比较,发现不同点,进而理解“含有未知数的项的次数都是一次”这句话的内涵。
在二元一次方程的解的教学过程中,采用的是让学生体会“一个解——不止一个解——无数个解”的渐进过程,感受到用一个二元一次方程并不能求出一对确定的未知数的取值,从而让学生产生有后续学习的愿望。
在讲授用含一个未知数的代数式表示另一个未知数的时候,采用“特殊——一般——特殊”的教学流程,以期突破难点。
首先抛出问题“这几个解你是如何求的”,此时注意的聚焦点是二元一次方程;
其次学生归纳先定一个未知数的取值,代入原方程求另一个未知数的值,此时注意的聚焦点是一元一次方程;
然后教师引导回到二元一次方程,假如x是一个常数,那么这个方程可以看成是一个关于谁的一元一次方程,此时注意的聚焦点是原来的二元一次方程;
最后代入求值,此时注意的聚焦点是等号右边的那个算式,体会“用含一个未知数的代数式表示另一个未知数”在求值过程中的简洁性,强化这种代数形式。
另外,在引导学生推导“用含一个未知数的代数式表示另一个未知数”的过程中,渗透数学的主元思想和转化思想。
《二元一次方程组》教学设计
一、教学目标
1.知识与技能目标:
(1)理解二元一次方程组的概念和二元一次方程组解的含义;
(2)会检验一对数是不是二元一次方程组的解,会利用列表尝试的方法求简单二元一次方程组的解;
(3)通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,同时培养学生观察、归纳、概括能力。
2.过程与方法目标
从一个学生熟悉的生活实例引入二元一次方程组的概念,并通过“辩一辩”“填一填”“试一试”“做一做”,加深学生对“二元一次方程组”和“二元一次方程组的解”的概念的理解;
并使学生初步了解用列表尝试的方法求二元一次方程组的解,并使学生在解决问题的过程中经历知识的产生过程。
3.情感与态度目标
从学生的生活实际提出问题,既体现知识的学习过程,又体现知识的应用过程,同时还有利于激发学生的学习兴趣,有利于学生养成关注身边的事例、关心他人,培养一种社会的责任感。
二、教学重点、难点
重点是二元一次方程组的意义和二元一次方程组解的概念。
难点是利用列表尝试的方法求简单二元一次方程组的解。
三、教学准备
多媒体、实物投影仪。
四、教学方法和手段
基于本节课内容的特点和七年级学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合。
与学生建立平等融洽的互动关系,营造合作交流的学习氛围。
在引导学生进行观察分析、抽象概括、练习巩固各个环节中运用多媒体进行演示,增强直观性,提高教学效率,激发学生的学习兴趣。
环节一创设情境,探索新知
问题1:
假设你们每人手上有一根长20cm的铁丝,将这根铁丝首尾相连围成一个正方形,围出来的正方形都完全一样吗?
问题2:
同样用这根20厘米长的铁丝,首尾相连围成的长方形都完全一样吗?
你能用二元一次方程来表示吗?
【设计意图】
①通过问题情境复习旧知,真正理解二元一次方程的意义;
②为探索新知做好铺垫。
问题3:
前面两个问题中都存在二元一次方程,为何围成的长方形有无数种情况,而围成的正方形只有一种情况?
通过两个问题的对比,让学生感受到与同时满足时,存在解的唯一性的过程,为二元一次方程组的形成做铺垫。
问题4:
你能否通过增加一个条件,使同学们围成的长方形都完全一样吗?
希望大家能增加更多不同类型的条件。
①开放性问题的设置不仅激发学生的求知欲,而且通过该开放性问题让学生真正感受二元一次方程组的形成;
②培养学生的合作意识以及团队精神;
③通过此问题引出二元一次方程组的概念。
【操作形式】
①学生先思考,再分组合作,小组汇报;
②根据学生的汇报,教师引导,从而引出二元一次方程组的概念;
③教师备用:
。
巩固概念
请在下列方程中选出两个方程,组成二元一次方程组。
问题5:
你怎么能肯定,你所增加的一个条件就一定使长方形确定下来了呢?
①通过问题的解决,导出二元一次方程组解的定义;
②让学生真正理解什么叫二元一次方程组的解。
环节二变题训练,巩固新知
比一比,赛一赛
1.方程组的解是()
A.B.C.D.
2.下列哪一个二元一次方程组的解为()
A.B.C.D.
3.你能通过下列表格的填写找到二元一次方程组的解吗?
的解
x
…
5.5
6
6.5
7
7.5
y
环节三感受生活,运用新知
小聪全家外出旅游,估计需要胶卷底片120张,商店里有两种型号的胶卷:
A型每卷36张底片,B型每卷12张底片。
小聪一共买了4卷胶卷,刚好有120张底片,如果两种胶卷分别买x卷和y卷.请根据问题中的条件列出关于x,y的方程组,并用列表尝试的方法求出A型和B型胶