人教版八年级数学下册二次根式的知识点汇总(超值哦)Word文档格式.doc
《人教版八年级数学下册二次根式的知识点汇总(超值哦)Word文档格式.doc》由会员分享,可在线阅读,更多相关《人教版八年级数学下册二次根式的知识点汇总(超值哦)Word文档格式.doc(6页珍藏版)》请在冰豆网上搜索。
取值范围
1、
二次根式有意义的条件:
由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2、
二次根式无意义的条件:
因负数没有算术平方根,所以当a﹤0时,没有意义。
例2.当x是多少时,在实数范围内有意义?
例3.当x是多少时,+在实数范围内有意义?
知识点三:
二次根式()的非负性
()表示a的算术平方根,也就是说,()是一个非负数,即0()。
因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;
若,则a=0,b=0;
若,则a=0,b=0。
例4
(1)已知y=++5,求的值.
(2)若+=0,求a2004+b2004的值
知识点四:
二次根式()的性质
()
文字语言叙述为:
一个非负数的算术平方根的平方等于这个非负数。
二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:
若,则,如:
,.
例1计算
1.()22.(3)23.()24.()2
例2在实数范围内分解下列因式:
(1)x2-3
(2)x4-4(3)2x2-3
知识点五:
二次根式的性质
一个数的平方的算术平方根等于这个数的绝对值。
1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,
即;
若a是负数,则等于a的相反数-a,即;
2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;
3、化简时,先将它化成,再根据绝对值的意义来进行化简。
例1化简
(1)
(2)(3)(4)
例2填空:
当a≥0时,=_____;
当a<
0时,=_______,并根据这一性质回答下列问题.
(1)若=a,则a可以是什么数?
(2)若=-a,则a是什么数?
(3)>
a,则a是什么数?
例3当x>
2,化简-.
知识点六:
与的异同点
1、不同点:
与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;
在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,
,而
2、相同点:
当被开方数都是非负数,即时,=;
时,无意义,而.
知识点七:
二次根式的乘除
1、乘法·
=(a≥0,b≥0)反过来:
=·
(a≥0,b≥0)
2、除法=(a≥0,b>
0)反过来,=(a≥0,b>
0)
(思考:
b的取值与a相同吗?
为什么?
不相同,因为b在分母,所以不能为0)
例1.计算
(1)4×
(2)×
(3)×
(4)×
例2化简
(1)
(2)(3)(4)
例3.判断下列各式是否正确,不正确的请予以改正:
(1)
=4×
×
=4=8
例4.计算:
(1)
(2)(3)(4)
例5.化简:
(1)
(2)(3)(4)
例6.已知,且x为偶数,求(1+x)的值.
3、最简二次根式应满足的条件:
(1)被开方数不含分母或分母中不含二次根式;
(2)被开方数中不含开得尽方的因数或因式
(熟记20以内数的平方;
因数或因式间是乘积的关系,当被开方数是整式时要先判断是否能够分解因式,然后再观察各个因式的指数是否是2(或2的倍数),若是则说明含有能开方的因式,则不满足条件,就不是最简二次根式)
例1.把下列二次根式化为最简二次根式
(1);
(2);
(3)
4、化简最简二次根式的方法:
(1)把被开方数(或根号下的代数式)化成积的形式,即分解因式;
(2)化去根号内的分母(或分母中的根号),即分母有理化;
(3)将根号内能开得尽方的因数(或因式)开出来.(此步需要特别注意的是:
开到根号外的时候要带绝对值,注意符号问题)
5.有理化因式:
一般常见的互为有理化因式有如下几类:
①与;
②与;
③与;
④与.
说明:
利用有理化因式的特点可以将分母有理化.
13、同类二次根式:
被开方数相同的(最简)二次根式叫同类二次根式。
判断是否是同类二次根式时务必将各个根式都化为最简二次根式。
如与
知识点八:
二次根式的加减
1、二次根式的加减法:
先把各个二次根式化为最简二次根式,再把被开方数相同的二次根式(即同类二次根式)进行合并。
(合并方法为:
将系数相加减,二次根式部分不变),不能合并的直接抄下来。
例1.计算
(1)+
(2)+
第一步,将不是最简二次根式的项化为最简二次根式;
第二步,将相同的最简二次根式进行合并.
解:
(1)+=2+3=(2+3)=5
(2)+=4+8=(4+8)=12
例2.计算
(1)3-9+3
(2)(+)+(-)
例3.已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.
2、二次根式的混合运算:
先计算括号内,再乘方(开方),再乘除,再加减
3、二次根式的比较:
(1)若,则有;
(2)若,则有.
(3)将两个根式都平方,比较平方后的大小,对应平方前的大小
例4.比较3与4的大小
6