北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx

上传人:b****1 文档编号:14512456 上传时间:2022-10-23 格式:DOCX 页数:31 大小:429.20KB
下载 相关 举报
北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx_第1页
第1页 / 共31页
北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx_第2页
第2页 / 共31页
北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx_第3页
第3页 / 共31页
北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx_第4页
第4页 / 共31页
北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx_第5页
第5页 / 共31页
点击查看更多>>
下载资源
资源描述

北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx

《北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx》由会员分享,可在线阅读,更多相关《北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx(31页珍藏版)》请在冰豆网上搜索。

北京市东城区学年九年级上学期期末数学试题含答案解析文档格式.docx

二、填空题

9.写出一个二次函数,使其满足:

①图象开口向下;

②当时,随着的增大而减小.这个二次函数的解析式可以是______.

10.如图,点在上,弦垂直平分,垂足为.若,则的长为_____.

11.盒中有2个黄球、1个白球,盒中有1个黄球、1个白球,这些球除颜色外无其他差别.分别从每个盒中随机取出1个球,取出的2个球都是白球的概率是_______.

12.2017年生产1吨某种商品的成本是3000元,由于原料价格上涨,两年后,2019年生产1吨该商品的成本是5000元,求该种商品成本的年平均增长率.设年平均增长率为,则所列的方程应为_______(不增加其它未知数).

13.在平面直角坐标系中,将抛物线沿着轴平移2个单位长度,所得抛物线的解析式为________.

14.如图,是等边三角形.若将绕点逆时针旋转角后得到,连接和,则的度数为________.

15.已知抛物线与直线相交于两点,若点的横坐标,则点的横坐标的值为_______.

16.如图1,在中,是边上一动点,设两点之间的距离为两点之间的距离为,表示与的函数关系的图象如图2所示.则线段的长为_____,线段的长为______.

三、解答题

17.已知:

如图线段.

求作:

以为斜边的直角,使得一个内角等于30°

作法:

①作线段的垂直平分线交于点;

②以点为圆心,长为半径画圆;

③以点为圆心,长为半径画弧,与相交,

记其中一个交点为;

④分别连接.

就是所求作的直角三角形.

(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);

(2)完成下面的证明.

证明:

连接,

是的直径,

_________°

(____________)(填推理的依据).

是以为斜边的直角三角形.

是等边三角形.

_______°

18.在平面直角坐标系中,二次函数的图象与轴交于点,且过点.

(1)求二次函数的解析式;

(2)当时,求的取值范围.

19.如图,平分,作交于点,点在的延长线上,,的延长线交于点.

(1)求证:

(2)若,求的值.

20.关于的一元二次方程.

(1)若方程有两个相等的实数根用含的代数式表示;

(2)若方程有两个不相等的实数根,且.

①求的取值范围;

②写出一个满足条件的的值,并求此时方程的根.

21.在平面直角坐标系中,已知双曲线过点,与直线交于两点(点的横坐标小于点的横坐标).

(1)求的值;

(2)求点的坐标;

(3)若直线与双曲线交于点,与直线交于点.当时,写出的取值范围.

22.如图,在中,平分,交于点,以点为圆心,长为半径画.

(1)补全图形,判断直线与的位置关系,并证明;

(2)若,求的半径.

23.在平面直角坐标系中已知抛物线.

(1)若此抛物线经过点,求的值;

(2)求抛物线的顶点坐标(用含的式子表示);

(3)若抛物线上存在两点和,且,求的取值范围.

24.在中,于点.

(1)如图1,当点是线段的中点时,

①的长为________;

②延长至点,使得,此时与的数量关系是_______,与的数量关系是_______;

(2)如图2,当点不是线段的中点时,画(点与点在直线的异侧),使,连接.

①按要求补全图形;

②求的长.

25.在平面直角坐标系中,的半径为1.

给出如下定义:

记线段的中点为,当点不在上时,平移线段,使点落在上,得到线段(分别为点的对应点)线段长度的最小值称为线段到的“平移距离”.

(1)已知点的坐标为,点在轴上.

①若点与原点重合,则线段到的“平移距离”为________;

②若线段到的“平移距离”为2,则点的坐标为________;

(2)若点都在直线上,且,记线段到的“平移距离”为,求的最小值;

(3)若点的坐标为,且,记线段到的“平移距离”为,直接写出的取值范围.

参考答案

1.B

【分析】

根据中心对称图形和轴对称图形的定义判断即可.

【详解】

∵直角三角形不是中心图形,不符合题意,

∴A选项错误;

∵圆是中心图形,也是轴对称图形,符合题意,

∴B选项正确;

∵等边三角形不是中心图形,是轴对称图形,不符合题意,

∴C选项错误;

∵四边形无法确定其对称性,不符合题意,

∴D选项错误;

故选B.

【点睛】

本题考查了中心对称图形和轴对称图形的定义,熟记两种对称图形的定义是解题的关键.

2.A

先确定P点在第一象限,分别画出各个选项的图象判定即可.

解:

∵,

∴点P在第一象限,

如图所示:

只有的图象过第一象限,

故选A.

本题考查了函数的图象,掌握一次函数,二次函数及反比例函数的图象的特点是解题的关键.

3.C

根据方程根的定义,回代原方程中,解关于a的方程求解即可.

∵的方程的一个根是,

∴,

解得a=,

故选C.

本题考查了一元二次方程的根,熟记根的定义是解题关键.

4.B

构造菱形的对角线与面积之间的函数关系式,根据关系式进行判断即可.

设菱形的面积为S,两条对角线的长分别为x、y,则有,

而菱形的面积为定值,即2S为定值,是常数不变,

所以y是x的反比例函数,

故选:

B.

本题考查反比例函数关系,理解反比例函数的意义是正确判断的前提.

5.D

根据关于y轴对称的点的坐标特征对A进行判断;

根据关于x轴对称的点的坐标特征对B进行判断;

根据关于原点对称的点的坐标特征对C、D进行判断.

A、△ABC与△A'

B'

C'

关于y轴对称,所以A选项不符合题意;

B、△ABC与△A'

关于x轴对称,所以B选项不符合题意;

C、△ABC与△A'

关于(-,0)对称,所以C选项不符合题意;

D、△ABC与△A'

关于原点对称,所以D选项符合题意;

本题考查了中心对称:

把一个图形绕着某个点旋转180°

,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:

关于中心对称的两个图形能够完全重合;

关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.

6.B

根据概率的意义列方程求解即可.

由题意得,,

解得.

本题考查概率的意义及计算方法,理解概率的意义是正确求解的关键.

7.C

连接BA,证明△APB∽△DPC,列比例计算即可.

如图,连接AB,

∵∠A=∠D,∠B=∠C,

∴△APB∽△DPC,

∴,

∴需要测量线段AB的长度,

本题考查了圆中三角形的相似,熟练运用同圆或等圆中,同弧或等弧上的圆周角相等是解题的关键.

8.D

利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.

扇形的弧长是:

圆的半径为r,则底面圆的周长是2πr,

圆锥的底面周长等于侧面展开图的扇形弧长则得到:

=2πr,

即:

R=4r,

R与r之间的关系是R=4r.

D.

本题综合考查有关扇形和圆锥的相关计算.解题思路:

解决此类问题时要紧紧抓住两者之间的两个对应关系:

(1)圆锥的母线长等于侧面展开图的扇形半径;

(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.

9.y=-x2-2x-1.

首先由①得到a<0;

由②得到-≤0;

只要举出满足以上两个条件的a、b、c的值即可得出所填答案.

二次函数y=ax2+bx+c,

①开口向下,

∴a<0;

②当x>0时,y随着x的增大而减小,-≤0,即b<0;

∴只要满足以上两个条件就行,

如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x2-2x-1.

故答案为:

y=-x2-2x-1.

本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.

10.

连接OC,根据垂径定理和勾股定理即可求出答案.

连接OC,

∵弦垂直平分,

∴∠COD=90°

,BD=CD,OD=AD,

∴OD=OA=×

4=2,

∴CD=,

∴BC=2CD=,

本题考查了垂径定理,勾股定理,关键是连接半径OC,构造直角三角形求出CD的长度,题目比较典型,难度适中.

11.

画树状图展示所有6种等可能的结果数,找出2个球都是白球的结果数,然后根据概率公式求解即可.

根据题意画图如下:

共有6种等可能的结果数,其中取出的2个球都是白球的有1种,

则取出的2个球都是白球的概率是:

本题考查了列表法与树状图法.利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.

12..

设这种商品的年平均增长率为x,根据题意列方程即可.

设这种商品的年平均增长率为x,

由题意得:

本题考查增长率问题,解题的关键是明确题意,根据等量关系列出方程.

13.y=x2+2或y=x2-2.

根据图象的平移规律,可得答案.

将抛物线y=x2沿着y轴正方向平移2个单位长度,所得抛物线的解析式为y=x2+2;

将抛物线y=x2沿着y轴负方向平移2个单位长度,所得抛物线的解析式为y=x2-2;

故答案是:

y=x2+2或y=x2-2.

本题主要考查了二次函数与几何变换问题,要求熟练掌握平移的规律:

左加右减,上加下减.并用规律求函数解析式.

14.30°

由旋转的性质得出AC=AC'

,∠CAC'

=α,由

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 党团工作 > 党团建设

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1