模具高速铣削加工技术1.docx

上传人:b****3 文档编号:1447694 上传时间:2022-10-22 格式:DOCX 页数:7 大小:22.95KB
下载 相关 举报
模具高速铣削加工技术1.docx_第1页
第1页 / 共7页
模具高速铣削加工技术1.docx_第2页
第2页 / 共7页
模具高速铣削加工技术1.docx_第3页
第3页 / 共7页
模具高速铣削加工技术1.docx_第4页
第4页 / 共7页
模具高速铣削加工技术1.docx_第5页
第5页 / 共7页
点击查看更多>>
下载资源
资源描述

模具高速铣削加工技术1.docx

《模具高速铣削加工技术1.docx》由会员分享,可在线阅读,更多相关《模具高速铣削加工技术1.docx(7页珍藏版)》请在冰豆网上搜索。

模具高速铣削加工技术1.docx

模具高速铣削加工技术1

模具高速铣削加工技术

本文从机床结构、切削刀柄和刀具、加工工艺、数控编程等方面较为详尽地讲述了高速铣削的技术特点以及在模具加工行业的应用。

虽然文章写得较为宏观, 但内容较为全面,对模具领域的读者全面了解和应用高速加工技术,还是有较强的指导意义的。

一、前言

    在现代模具生产中,随着对塑件的美观度及功能要求得越来越高,塑件内部结构设计得越来越复杂,模具的外形设计也日趋复杂,自由曲面所占比例不断增加,相应的模具结构也设计得越来越复杂。

这些都对模具加工技术提出了更高要求,不仅应保证高的制造精度和表面质量,而且要追求加工表面的美观。

随着对高速加工技术研究的不断深入,尤其在加工机床、数控系统、刀具系统、CAD/CAM软件等相关技术不断发展的推动下,高速加工技术已越来越多地应用于模具型腔的加工与制造中。

    数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。

相对于传统的切削加工,其切削速度、进给速度有了很大的提高,而且切削机理也不相同。

高速切削使切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。

随着切削速度的提高,单位时间毛坯材料的去除率增加了,切削时间减少了,加工效率提高了,从而缩短了产品的制造周期,提高了产品的市场竞争力。

同时,高速加工的小量快进使切削力减少了,切屑的高速排出减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。

由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的表面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。

在模具的高淬硬钢件(HRC45~HRC65)的加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,从而避免了电极的制造和费时的电加工,大幅度减少了钳工的打磨与抛光量。

对于一些市场上越来越需要的薄壁模具工件,高速铣削也可顺利完成,而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。

    高速加工技术对模具加工工艺产生了巨大影响,改变了传统模具加工采用的“退火→铣削加工→热处理→磨削”或“电火花加工→手工打磨、抛光”等复杂冗长的工艺流程,甚至可用高速切削加工替代原来的全部工序。

高速加工技术除可应用于淬硬模具型腔的直接加工(尤其是半精加工和精加工)外,在EDM电极加工、快速样件制造等方面也得到了广泛应用。

大量生产实践表明,应用高速切削技术可节省模具后续加工中约80%的手工研磨时间,节约加工成本费用近30%,模具表面加工精度可达1 m,刀具切削效率可提高1倍。

二、高速铣削加工机床

    高速切削技术是切削加工技术的主要发展方向之一,它随着CNC技术、微电子技术、新材料和新结构等基础技术的发展而迈上更高的台阶。

由于模具加工的特殊性以及高速加工技术的自身特点,对模具高速加工的相关技术及工艺系统(加工机床、数控系统、刀具等)提出了比传统模具加工更高的要求。

    1. 高稳定性的机床支撑部件

    高速切削机床的床身等支撑部件应具有很好的动、静刚度,热刚度和最佳的阻尼特性。

大部分机床都采用高质量、高刚性和高抗张性的灰铸铁作为支撑部件材料,有的机床公司还在底座中添加高阻尼特性的聚合物混凝土,以增加其抗振性和热稳定性,这不但可保证机床精度稳定,也可防止切削时刀具振颤。

采用封闭式床身设计,整体铸造床身,对称床身结构并配有密布的加强筋等也是提高机床稳定性的重要措施。

一些机床公司的研发部门在设计过程中,还采用模态分析和有限元结构计算等,优化了结构,使机床支撑部件更加稳定可靠。

    2. 机床主轴

    高速机床的主轴性能是实现高速切削加工的重要条件。

高速切削机床主轴的转速范围为10000~100000m/min,主轴功率大于15kW。

通过主轴压缩空气或冷却系统控制刀柄和主轴间的轴向间隙不大于0.005mm。

还要求主轴具有快速升速、在指定位置快速准停的性能(即具有极高的角加减速度),因此高速主轴常采用液体静压轴承式、空气静压轴承式、热压氮化硅(Si3N4)陶瓷轴承磁悬浮轴承式等结构形式。

润滑多采用油气润滑、喷射润滑等技术。

主轴冷却一般采用主轴内部水冷或气冷。

    3. 机床驱动系统

    为满足模具高速加工的需要,高速加工机床的驱动系统应具有下列特性:

    

(1) 高的进给速度。

研究表明,对于小直径刀具,提高转速和每齿进给量有利于降低刀具磨损。

目前常用的进给速度范围为20~30m/min,如采用大导程滚珠丝杠传动,进给速度可达60m/min;采用直线电机则可使进给速度达到120m/min。

    

(2)高的加速度。

对三维复杂曲面廓形的高速加工要求驱动系统具有良好的加速度特性,要求提供高速进给的驱动器(快进速度约40m/min,3D轮廓加工速度为10m/min),能够提供0.4m/s2到10m/s2的加速度和减速度。

    机床制造商大多采用全闭环位置伺服控制的小导程、大尺寸、高质量的滚珠丝杠或大导程多头丝杠。

随着电机技术的发展,先进的直线电动机已经问世,并成功应用于CNC机床。

先进的直线电动机驱动使CNC机床不再有质量惯性、超前、滞后和振动等问题,加快了伺服响应速度,提高了伺服控制精度和机床加工精度。

    4. 数控系统

    先进的数控系统是保证模具复杂曲面高速加工质量和效率的关键因素,模具高速切削加工对数控系统的基本要求为:

    

(1) 高速的数字控制回路(Digital control loop),包括:

32位或64位并行处理器及1.5Gb以上的硬盘;极短的直线电机采样时间。

    

(2)速度和加速度的前馈控制(Feed forward control);数字驱动系统的爬行控制(Jerk control)。

    (3) 先进的插补方法( 基于NURBS的样条插补),以获得良好的表面质量、精确的尺寸和高的几何精度。

    (4)预处理(Look-ahead)功能。

要求具有大容量缓冲寄存器,可预先阅读和检查多个程序段(如DMG机床可多达500个程序段,Simens系统可达1000~2000个程序段),以便在被加工表面形状(曲率)发生变化时可及时采取改变进给速度等措施以避免过切等。

    (5)误差补偿功能,包括因直线电机、主轴等发热导致的热误差补偿、象限误差补偿、测量系统误差补偿等功能。

 此外,模具高速切削加工对数据传输速度的要求也很高。

    (6) 传统的数据接口, 如RS232串行口的传输速度为19.2kb,而许多先进的加工中心均已采用以太局域网(Ethernet)进行数据传输,速度可达200kb。

    5. 冷却润滑

    高速加工采用带涂层的硬质合金刀具,在高速、高温的情况下不用切削液,切削效率更高。

这是因为:

铣削主轴高速旋转,切削液若要达到切削区,首先要克服极大的离心力;即使它克服了离心力进入切削区,也可能由于切削区的高温而立即蒸发,冷却效果很小甚至没有;同时切削液会使刀具刃部的温度激烈变化,容易导致裂纹的产生,所以要采用油/气冷却润滑的干式切削方式。

这种方式可以用高压气体迅速吹走切削区产生的切削,从而将大量的切削热带走,同时经雾化的润滑油可以在刀具刃部和工件表面形成一层极薄的微观保护膜,可有效地延长刀具寿命并提高零件的表面质量。

三、高速切削加工的刀柄和刀具

    由于高速切削加工时离心力和振动的影响,要求刀具具有很高的几何精度和装夹重复定位精度以及很高的刚度和高速动平衡的安全可靠性。

由于高速切削加工时较大的离心力和振动等特点,传统的7:

24锥度刀柄系统在进行高速切削时表现出明显的刚性不足、重复定位精度不高、轴向尺寸不稳定等缺陷,主轴的膨胀引起刀具及夹紧机构质心的偏离,影响刀具的动平衡能力。

目前应用较多的是HSK高速刀柄和国外现今流行的热胀冷缩紧固式刀柄。

热胀冷缩紧固式刀柄有加热系统,刀柄一般都采用锥部与主轴端面同时接触,其刚性较好,但是刀具可换性较差,一个刀柄只能安装一种连接直径的刀具。

由于此类加热系统比较昂贵,在初期时采用HSK类的刀柄系统即可。

当企业的高速机床数量超过3台以上时,采用热胀冷缩紧固式刀柄比较合适。

    刀具是高速切削加工中最活跃重要的因素之一,它直接影响着加工效率、制造成本和产品的加工精度。

刀具在高速加工过程中要承受高温、高压、摩擦、冲击和振动等载荷,高速切削刀具应具有良好的机械性能和热稳定性,即具有良好的抗冲击、耐磨损和抗热疲劳的特性。

高速切削加工的刀具技术发展速度很快,应用较多的如金刚石(PCD)、立方氮化硼(CBN)、陶瓷刀具、涂层硬质合金、(碳)氮化钛硬质合金TIC(N)等。

    在加工铸铁和合金钢的切削刀具中,硬质合金是最常用的刀具材料。

硬质合金刀具耐磨性好,但硬度比立方氮化硼和陶瓷低。

为提高硬度和表面光洁度,采用刀具涂层技术,涂层材料为氮化钛(TiN)、氮化铝钛(TiALN)等。

涂层技术使涂层由单一涂层发展为多层、多种涂层材料的涂层,已成为提高高速切削能力的关键技术之一。

直径在10~40mm范围内,且有碳氮化钛涂层的硬质合金刀片能够加工洛氏硬度小于42的材料,而氮化钛铝涂层的刀具能够加工洛氏硬度为42甚至更高的材料。

高速切削钢材时,刀具材料应选用热硬性和疲劳强度高的P类硬质合金、涂层硬质合金、立方氮化硼(CBN)与CBN复合刀具材料(WBN)等。

切削铸铁,应选用细晶粒的K类硬质合金进行粗加工,选用复合氮化硅陶瓷或聚晶立方氮化硼(PCNB)复合刀具进行精加工。

精密加工有色金属或非金属材料时,应选用聚晶金刚石PCD或CVD金刚石涂层刀具。

选择切削参数时,针对圆刀片和球头铣刀,应注意有效直径的概念。

高速铣削刀具应按动平衡设计制造。

刀具的前角比常规刀具的前角要小,后角略大。

主副切削刃连接处应修圆或导角,来增大刀尖角,防止刀尖处热磨损。

应加大刀尖附近的切削刃长度和刀具材料体积,提高刀具刚性。

在保证安全和满足加工要求的条件下,刀具悬伸尽可能短,刀体中央韧性要好。

刀柄要比刀具直径粗壮,连接柄呈倒锥状,以增加其刚性。

尽量在刀具及刀具系统中央留有冷却液孔。

球头立铣刀要考虑有效切削长度,刃口要尽量短,两螺旋槽球头立铣刀通常用于粗铣复杂曲面,四螺旋槽球头立铣刀通常用于精铣复杂曲面。

四、模具高速加工工艺及策略

    高速加工包括以去除余量为目的的粗加工、残留粗加工,以及以获取高质量的加工表面及细微结构为目的的半精加工、精加工和镜面加工等。

    1. 粗加工

    模具粗加工的主要目标是追求单位时间内的材料去除率,并为半精加工准备工件的几何轮廓。

高速加工中的粗加工所应采取的工艺方案是高切削速度、高进给率和小切削用量的组合。

等高加工方式是众多CAM软件普遍采用的一种加工方式。

应用较多的是螺旋等高和等Z轴等高两种方式,也就是在加工区域仅一次进刀,在不抬刀的情况下生成连续光滑的刀具路径,进、退刀方式采用圆弧切入、切出。

螺旋等高方式的特点是,没有等高层之间的刀路移动,可避免频繁抬刀、进刀对零件表面质量的影响及机械设备不必要的耗损。

对陡峭和平坦区域分别处理,计算适合等高及适合使用类似3D偏置的区域,并且可以使用螺旋方式,在很少抬刀的情况下生成优化的刀具路径,获得更好的表面质量。

在高速加工中,一定要采取圆弧切入、切出连接方式,以及拐角处圆弧过渡,避免突然改变刀具进给方向,禁止使用直接下刀的连接方式,避免将刀具埋入工件。

加工模具型腔时,应避免刀具垂直插入工件,而应采用倾斜下刀方式(常用倾斜角为20°~30°),最好采用螺旋式下刀以降低刀具载荷。

加工模具型芯时,应尽量先从工件外部下刀然后水平切入工件。

刀具切入、切出工件时应尽可能采用倾斜式(或圆弧式)切入、切出,避免垂直切

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 外语学习 > 法语学习

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1