小学阶段奥数知识点汇总Word格式文档下载.docx
《小学阶段奥数知识点汇总Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《小学阶段奥数知识点汇总Word格式文档下载.docx(13页珍藏版)》请在冰豆网上搜索。
4、奥数知识点(盈亏问题)
盈亏问题
基本概念:
一定量的对象,按照某种标准分组,产生一种结果:
按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.
先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.
基本题型:
①一次有余数,另一次不足;
总份数=(余数+不足数)÷
两次每份数的差
②当两次都有余数
总份数=(较大余数一较小余数)÷
③当两次都不足;
总份数=(较大不足数一较小不足数)÷
基本特点:
对象总量和总的组数是不变的。
确定对象总量和总的组数。
5、小升初奥数知识点(牛吃草问题)
牛吃草问题
基本思路:
假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;
再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:
原草量和新草生长速度是不变的;
确定两个不变的量。
生长量=(较长时间×
长时间牛头数-较短时间×
短时间牛头数)÷
(长时间-短时间);
总草量=较长时间×
长时间牛头数-较长时间×
生长量;
6、小升初奥数知识点(平均数问题)
平均数基本公式:
①平均数=总数量÷
总份数7总数量=平均数×
总份数/L
总份数=总数量÷
平均数
②平均数=基准数+每一个数与基准数差的和÷
总份数
基本算法:
②
出总数量以及总份数,利用基本公式①进行计算.
②基准数法:
根据给出的数之间的关系,确定一个基准数;
一般选与所有数比较接近的数或者中间数为基准数;
以基准数为标准,求所有给出数与基准数的差;
再求出所有差的和;
再求出这些差的平均数;
最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②
7、小升初奥数知识点(周期循环数)
周期循环与数表规律
周期现象:
事物在运动变化的过程中,某些特征有规律循环出现。
周期:
我们把连续两次出现所经过的时间叫周期。
确定循环周期。
闰
年:
一年有366天;
①年份能被4整除;
②如果年份能被100整除,则年份必须能被400整除;
平
年:
一年有365天。
①
年份不能被4整除;
②如果年份能被100整除,但不能被400整除;
8、小升初奥数知识点(抽屉原理)
抽屉原则一:
如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:
把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0
②4=3+1+0
③4=2+2+0
④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:
总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:
如果把n个物体放在m个抽屉里,其中n>
m,那么必有一个抽屉至少有
①k=[n/m]+1个物体:
当n不能被m整除时。
②k=n/m个物体:
当n能被m整除时。
理解知识点:
[X]表示不超过X的最大整数。
例[4.351]=4;
[0.321]=0;
[2.9999]=2;
构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
9、奥数知识点(定义新运算)
小升初奥数知识点(数列求和)
数列求和
等差数列:
在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
首项:
等差数列的第一个数,一般用a1表示;
项数:
等差数列的所有数的个数,一般用n表示;
公差:
数列中任意相邻两个数的差,一般用d表示;
通项:
表示数列中每一个数的公式,一般用an表示;
数列的和:
这一数列全部数字的和,一般用Sn表示.
等差数列中涉及五个量:
a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;
求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
通项公式:
an=a1+(n-1)d;
通项=首项+(项数一1)×
公差;
数列和公式:
sn,=(a1+an)×
n÷
2;
数列和=(首项+末项)×
项数÷
项数公式:
n=(an-a1)÷
d+1;
项数=(末项-首项)÷
公差+1;
公差公式:
d=(an-a1))÷
(n-1);
公差=(末项-首项)÷
(项数-1);
确定已知量和未知量,确定使用的公式
10、加法乘法原理和几何计数
加法原理:
如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:
m1+m2.......+mn种不同的方法。
确定工作的分类方法。
基本特征:
每一种方法都可完成任务。
乘法原理:
如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:
m1×
m2.......×
mn种不同的方法。
确定工作的完成步骤。
每一步只能完成任务的一部分。
几何计数直线:
一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。
直线特点:
没有端点,没有长度。
线段:
直线上任意两点间的距离。
这两点叫端点。
线段特点:
有两个端点,有长度。
射线:
把直线的一端无限延长。
射线特点:
只有一个端点;
没有长度。
1数线段规律:
总数=1+2+3+…+(点数一1);
2数角规律=1+2+3+…+(射线数一1);
③数长方形规律:
个数=长的线段数×
宽的线段数:
④数长方形规律:
个数=1×
1+2×
2+3×
3+…+行数×
列数
11、小升初奥数知识点(质数与合数)
质数:
一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。
(合数:
一个数除了1和它本身之外,还有别的约数,这个数叫做合数。
质因数:
如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。
分解质因数:
把一个数用质数相乘的形式表示出来,叫做分解质因数。
通常用短除法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:
N=,其中a1、a2、a3……an都是合数N的质因数,且a1<
a2<
a3<
……<
an。
求约数个数的公式:
P=(r1+1)×
(r2+1)×
(r3+1)×
……×
(rn+1)
互质数:
如果两个数的最大公约数是1,这两个数叫做互质数。
12、小升初奥数知识点(约数与倍数)
约数和倍数:
若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。
公约数:
几个数公有的约数,叫做这几个数的公约数;
其中最大的一个,叫做这几个数的最大公约数。
最大公约数的性质:
1、几个数都除以它们的最大公约数,所得的几个商是互质数。
2、几个数的最大公约数都是这几个数的约数。
3、几个数的公约数,都是这几个数的最大公约数的约数。
4、几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。
例如:
12的约数有1、2、3、4、6、12;
18的约数有:
1、2、3、6、9、18,那么12和18的公约数有:
1、2、3、6;
那么12和18最大的公约数是:
6,记作(12,18)=6;
求最大公约数基本方法:
1、分解质因数法:
先分解质因数,然后把相同的因数连乘起来。
2、短除法:
先找公有的约数,然后相乘。
3、辗转相除法:
每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。
公倍数:
几个数公有的倍数,叫做这几个数的公倍数;
其中最小的一个,叫做这几个数的最小公倍数。
12的倍数有:
12、24、36、48……;
18的倍数有:
18、36、54、72……;
那么12和18的公倍数有:
36、72、108……;
那么12和18最小的公倍数是36,记作[12,18]=36;
最小公倍数的性质:
1、两个数的任意公倍数都是它们最小公倍数的倍数。
2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。
求最小公倍数基本方法:
1、短除法求最小公倍数;
2、分解质因数的方法
13、小升初奥数知识点(数的整除)
一、基本概念和符号:
1、整除:
如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:
整除符号“|”,不能整除符号“”;
因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1.能被2、5整除:
末位上的数字能被2、5整除。
2.能被4、25整除:
末两位的数字所组成的数能被4、25整除。
3.能被8、125整除:
末三位的数字所组成的数能被8、125整除。
4.能被3、9整除:
各个数位上数字的和能被3、9整除。
5.能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6.能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7.能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
6
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1.如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2.如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3.如果a能被b整除,b又能被c整除,那么a也能被c整除。
4.如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
14
、小升初奥数知识点(余数及其应用)
余数的性质:
-①余数小于除数。
②若a、b除以c的余数相同,则c|a-b或c|b-a。
③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。
④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数
余数、同余与周期
一、同余的定义:
1若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b