高中物理必修二知识点总结及典型题解析Word文档格式.docx

上传人:b****3 文档编号:14419047 上传时间:2022-10-22 格式:DOCX 页数:61 大小:1.21MB
下载 相关 举报
高中物理必修二知识点总结及典型题解析Word文档格式.docx_第1页
第1页 / 共61页
高中物理必修二知识点总结及典型题解析Word文档格式.docx_第2页
第2页 / 共61页
高中物理必修二知识点总结及典型题解析Word文档格式.docx_第3页
第3页 / 共61页
高中物理必修二知识点总结及典型题解析Word文档格式.docx_第4页
第4页 / 共61页
高中物理必修二知识点总结及典型题解析Word文档格式.docx_第5页
第5页 / 共61页
点击查看更多>>
下载资源
资源描述

高中物理必修二知识点总结及典型题解析Word文档格式.docx

《高中物理必修二知识点总结及典型题解析Word文档格式.docx》由会员分享,可在线阅读,更多相关《高中物理必修二知识点总结及典型题解析Word文档格式.docx(61页珍藏版)》请在冰豆网上搜索。

高中物理必修二知识点总结及典型题解析Word文档格式.docx

1.合运动与分运动的关系:

等时性、独立性、等效性、矢量性。

2.互成角度的两个分运动的合运动的判断:

①两个匀速直线运动的合运动仍然是匀速直线运动。

②速度方向不在同一直线上的两个分运动,一个是匀速直线运动,一个是匀变速直线运动,其合运动是匀变速曲线运动,a合为分运动的加速度。

③两初速度为0的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为0的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。

当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

3、有关“曲线运动”的两大题型

(1)小船过河问题

模型一:

过河时间t最短:

模型二:

直接位移x最短:

模型三:

间接位移x最短:

[触类旁通]1.(2011年上海卷)如图5-4所示,人沿平直的河岸以速度v行走,且通过不可伸长的绳拖船,船沿绳的方向行进.此过程中绳始终与水面平行,当绳与河岸的夹角为α时,船的速率为(C)。

解析:

依题意,船沿着绳子的方向前进,即船的速度总是沿着绳子的,根据绳子两端连接的物体在绳子方向上的投影速度相同,可知人的速度v在绳子方向上的分量等于船速,故

v船=vcosα,C正确.

2.(2011年江苏卷)如图5-5所示,甲、乙两同学从河中O点出发,分别沿直线游到A点和B点后,立即沿原路线返回到O点,OA、OB分别与水流方向平行和垂直,且OA=OB.若水流速度不变,两人在静水中游速相等,则他们所用时间t甲、t乙的大小关系为(C)

A.t甲<

t乙B.t甲=t乙

C.t甲>

t乙D.无法确定

设游速为v,水速为v0,OA=OB=l,则t甲=+;

乙沿OB运动,乙的速度矢量图如图4所示,合速度必须沿OB方向,则t乙=2·

,联立解得t甲>

t乙,C正确.

(2)绳杆问题(连带运动问题)

1、实质:

合运动的识别与合运动的分解。

2、关键:

①物体的实际运动是合速度,分速度的方向要按实际运动效果确定;

②沿绳(或杆)方向的分速度大小相等。

模型四:

如图甲,绳子一头连着物体B,一头拉小船A,这时船的运动方向不沿绳子。

处理方法:

如图乙,把小船的速度vA沿绳方向和垂直于绳的方向分解为v1和v2,v1就是拉绳的速度,vA就是小船的实际速度。

[触类旁通]如图,在水平地面上做匀速直线运动的汽车,通过定滑轮用绳子吊起一个物体,若汽车和被吊物体在同一时刻的速度分别为v1和v2,则下列说法正确的是(C)

A.物体做匀速运动,且v2=v1B.物体做加速运动,且v2>

v1

C.物体做加速运动,且v2<

v1D.物体做减速运动,且v2<

汽车向左运动,这是汽车的实际运动,故为汽车的合运动.汽车的运动导致两个效果:

一是滑轮到汽车之间的绳变长了;

二是滑轮到汽车之间的绳与竖直方向的夹角变大了.显然汽车的运动是由沿绳方向的直线运动和垂直于绳改变绳与竖直方向的夹角的运动合成的,故应分解车的速度,如图,沿绳方向上有速度v2=v1sinθ.由于v1是恒量,而θ逐渐增大,所以v2逐渐增大,故被吊物体做加速运动,且v2<v1,C正确.

5-2平抛运动&

类平抛运动

一、抛体运动

以一定的速度将物体抛出,在空气阻力可以忽略的情况下,物体只受重力的作用,它的运动即为抛体运动。

①物体具有初速度;

②运动过程中只受G。

二、平抛运动

如果物体运动的初速度是沿水平方向的,这个运动就叫做平抛运动。

①物体具有水平方向的加速度;

(1)位移:

(2)速度:

,,,

(3)推论:

①从抛出点开始,任意时刻速度偏向角θ的正切值等于位移偏向角φ的正切值的两倍。

证明如下:

tanθ=tanα=2tanφ。

②从抛出点开始,任意时刻速度的反向延长线对应的水平位移的交点为此水平位移的中点,即如果物体落在斜面上,则位移偏向角与斜面倾斜角相等。

3.处理方法:

平抛运动可以看作两个分运动的合运动:

一个是水平方向的匀速直线运动,一个是竖直方向的自由落体运动。

4.规律:

[牛刀小试]如图为一物体做平抛运动的x-y图象,物体从O点抛出,x、y分别表示其水平位移和竖直位移.在物体运动过程中的某一点P(a,b),其速度的反向延长线交于x轴的A点(A点未画出),则OA的长度为(B)

A.aB.0.5aC.0.3aD.无法确定

作出图示(如图5-9所示),设v与竖直方向的夹角为α,根据几何关系得tanα=①,由平抛运动得水平方向有a=v0t②,竖直方向有

b=vyt③,由①②③式得tanα=,在Rt△AEP中,AE=btanα=,所以OA=.

5.应用结论——影响做平抛运动的物体的飞行时间、射程及落地速度的因素

a、飞行时间:

,t与物体下落高度h有关,与初速度v0无关。

b、水平射程:

由v0和h共同决定。

c、落地速度:

,v由v0和vy共同决定。

三、平抛运动及类平抛运动常见问题

斜面问题:

[触类旁通](2010年全国卷Ⅰ)一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动轨迹如图5-10中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为(D)

如图5所示,平抛的末速度与竖直方向的夹角等于斜面倾角θ,有tanθ=,则下落高度与水平射程之比为===,D正确.

模型二:

临界问题:

模型三:

类平抛运动:

[综合应用](2011年海南卷)如图所示,水平地面上有一个坑,其竖直截面为半圆,ab为沿水平方向的直径.若在a点以初速度v0沿ab方向抛出一小球,小球会击中坑壁上的c点.已知c点与水平地面的距离为坑半径的一半,求坑的半径。

解:

设坑的半径为r,由于小球做平抛运动,则

x=v0t①

y=0.5r=gt2②

过c点作cd⊥ab于d点,则有Rt△acd∽Rt△cbd

可得cd2=ad·

db

即为()2=x(2r-x)③

又因为x>

r,联立①②③式解得r=v.

5-3圆周运动&

向心力&

生活中常见圆周运动

一、匀速圆周运动

物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。

2.特点:

①轨迹是圆;

②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;

③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;

④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。

3.描述圆周运动的物理量:

(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;

其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;

(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;

国际单位符号是rad/s;

(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;

(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;

(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.

4.各运动参量之间的转换关系:

5.三种常见的转动装置及其特点:

共轴传动模型二:

皮带传动模型三:

齿轮传动

[触类旁通]1、一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相同的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,如图所示,A的运动半径较大,则(AC)

A.A球的角速度必小于B球的角速度

B.A球的线速度必小于B球的线速度

C.A球的运动周期必大于B球的运动周期

D.A球对筒壁的压力必大于B球对筒壁的压力

小球A、B的运动状态即运动条件均相同,属于三种模型中的皮带传送。

则可以知道,两个小球的线速度v相同,B错;

因为RA>

RB,则ωA<

ωB,TA<

TB,A.C正确;

又因为两小球各方面条件均相同,所以,两小球对筒壁的压力相同,D错。

所以A、C正确。

2、两个大轮半径相等的皮带轮的结构如图所示,AB两点的半径之比为2:

1,CD两点的半径之比也为2:

1,则ABCD四点的角速度之比为1∶1∶2∶2,这四点的线速度之比为2∶1∶4∶2。

二、向心加速度

任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。

注:

并不是任何情况下,向心加速度的方向都是指向圆心。

当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。

2.方向:

在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。

向心加速度只改变线速度的方向而非大小。

3.意义:

描述圆周运动速度方向方向改变快慢的物理量。

4.公式:

5.两个函数图像:

[触类旁通]1、如图所示的吊臂上有一个可以沿水平方向运动的小车A,小车下装有吊着物体B的吊钩。

在小车A与物体B以相同的水平速度沿吊臂方向匀速运动的同时,吊钩将物体B向上吊起。

A、B之间的距离以d=H-2t2(SI)(SI表示国际单位制,式中H为吊臂离地面的高度)规律变化。

对于地面的人来说,则物体做(AC)

  A.速度大小不变的曲线运动

  B.速度大小增加的曲线运动

  C.加速度大小方向均不变的曲线运动

D.加速度大小方向均变化的曲线运动

2、如图所示,位于竖直平面上的圆弧轨道光滑,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,到达B点时的速度为,最后落在地面上C点处,不计空气阻力,求:

(1)小球刚运动到B点时的加速度为多大,对轨道的压力多大;

(2)小球落地点C与B点水平距离为多少。

三、向心力

做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。

总是指向圆心。

3.公式:

4.几个注意点:

①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。

②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。

③描述做匀速圆周运动的物体时,不能说该物体受向心力,而是说该物体受到什么力,这几个力的合力充当或提供向心力。

四、变速圆周运动的处理方法

1.特点:

线速度、向心力、向心加速度的大小和方向均变化。

2.动力学方程:

合外力沿法线方向的分力提供向心力:

合外力沿切线方向的分力产生切线加速度:

FT=mωaT。

3.离心运动:

(1)当物体实际受到的沿半径方向的合力满足F供=F需=mω2r时,物体做圆周运动;

当F供<

F需=mω2r时,物体做离心运动。

(2)离心运动并不是受“离心力”的作用产生的运动,而是惯性的表现,是F供<

F需的结果;

离心运动也不是沿半径方向向外远离圆心的运动。

5、圆周运动的典型类型

类型

受力特点

图示

最高点的运动情况

用细绳拴一小球在竖直平面内转动

绳对球只有拉力

①若F=0,则mg=,v=

②若F≠0,则v>

小球固定在轻杆的一端在竖直平面内转动

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 临床医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1