基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx

上传人:b****3 文档编号:14406135 上传时间:2022-10-22 格式:DOCX 页数:30 大小:629.36KB
下载 相关 举报
基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx_第1页
第1页 / 共30页
基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx_第2页
第2页 / 共30页
基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx_第3页
第3页 / 共30页
基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx_第4页
第4页 / 共30页
基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx_第5页
第5页 / 共30页
点击查看更多>>
下载资源
资源描述

基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx

《基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx(30页珍藏版)》请在冰豆网上搜索。

基于51单片机病床呼叫系统的设计资料Word格式文档下载.docx

单片机应用也越来越广泛,从开始的工作控制,到现在的航空航天、消防安全、工作数据采集、石油地质勘探、铁路交通运输以及楼宇自动化等,甚至目前的许多家电中都有单片机的应用。

随着计算机技术的飞速发展,单片机已逐渐发展成为一门关键的技术学科。

而随着社会的进步和发展,医疗水平的不断提高,现代医院护理需要简易及时地获知并处理病人的突发病况。

基于单片微型计算机设计的医院病床呼叫控制系统能同时监控64号病床,避免了人工呼叫的不便与效果差等缺点,它是现代医院必不可少的设备。

有了病床呼叫控制系统,医院的护理工作变得更加方便全面,不用再为人手不足或未能及时发现突发病况而烦恼。

本文实现了对病床呼叫控制系统的设计,详细介绍了51系列单片机应用中的数据转换原理、键盘扫描电路与原理、数码显示管驱动电路等知识,从而学习、了解单片机相关指令在各方面的应用,进一步提高单片机相关电子电路的设计和开发能力。

该系统由AT89C51、LCD1602液晶显示屏、按键、锁存器、蜂鸣器等重要元器件构成,布线简单、功能先进,性能稳定,程序精简。

文章中有电路原理图、仿真图、系统程序清单、源程序等,以供读者参考。

【关键词】AT89C51LCD1602液晶按键蜂鸣器

前言

最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。

在实时运作和自动控制的单片机应用到系统中,单片机如今是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。

“单片机原理及应用课程设计”是电子类专业的学科基础科,它是继“汇编语言程序设计”,“接口技术”等课程之后开出的实践环节课程。

第一章工作原理

1.1设计目标

1.1.1基本功能

本设计以单片微型计算机的监测与控制为目标,设计一台(模拟)病床呼叫控制器。

能够对多个病床进行监控,对于病床的呼叫作出及时的声音告警并能准确的显示出所呼叫的病床床号,使医护人员能及时准确地赶到病床,给予病人及时的救护与医疗。

具体的设计目标和要求如下:

1、对24个病床的呼叫作出检测;

2、病床呼叫后,病床呼叫控制器能发出声音告警医护人员;

3、用LCD1602液晶显示出所呼叫的病床床号;

4、取消报警。

5、允许两个连续的呼叫间隔不大于5ms

第二章硬件设计与原理

单片微型计算机控制完成对24个病床的呼叫情况的巡回检测、呼叫开关电路输出病床呼叫的信息、LCD1602液晶显示出所呼叫的病床床号、床号显示复位按键给医护人员查看呼叫床号并实现清除已确定的呼叫床号、呼救告警电路用于当有病床呼叫时的声音告警等。

本设计系统能连续性地存储和读出显示呼叫的病床床号等等。

2.1总设计框图

2.2硬件设计分析

2.2.1电源的设计

系统电源使用外接直流5伏。

2.2.2单片机最小系统

51单片机是对目前所有兼容intel8031指令系统的单片机的统称。

该系列单片机的始祖是intel的8031单片机,后来随着技术的发展,成为目前广泛应用的8为单片机之一。

单片机是在一块芯片内集成了CPU、RAM、ROM、定时器/计数器和多功能I/O口等计算机所需要的基本功能部件的大规模集成电路,又称为MCU。

51系列单片机内包含以下几个部件:

一个8位CPU;

一个片内振荡器及时钟电路;

4KB的ROM程序存储器;

一个128B的RAM数据存储器;

寻址64KB外部数据存储器和64KB外部程序存储空间的控制电路;

32条可编程的I/O口线;

两个16位定时/计数器;

一个可编程全双工串行口;

5个中断源、两个优先级嵌套中断结构。

如图2-2-1所示为AT89C51单片机基本构造,其基本性能介绍如下:

图2-2-1AT89C51单片机

AT89C51本身内含40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中端口,3个16位可编程定时计数器,2个全双工串行通信口,AT89C51可以按照常规方法进行编程,但不可以在线编程。

其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。

AT89C51的主要特性如下表所示:

兼容MCS—51指令系统

32个可编程I/O线

4k字节可编程闪烁存储器

可编程UARL通道

三个16位可编程定时/计数器中断

时钟频率0-24MHz

2个外部中断源,共8个中断源

256×

8bit内部RAM

2个读写中断口线

可直接驱动LED

软件设置睡眠和唤醒功能

低功耗空闲和掉电模式

表2-2-1AT89C51主要功能描述

AT89C51为40脚双列直插封装的8位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc51相同,其主要用于会聚调整时的功能控制。

功能包括对会聚主IC内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。

主要管脚有:

XTAL1(19脚)和XTAL2(18脚)为振荡器输入输出端口,外接12MHz晶振。

RST/Vpd(9脚)为复位输入端口,外接电阻电容组成的复位电路。

VCC(40脚)和VSS(20脚)为供电端口,分别接+5V电源的正负端。

P0~P3为可编程通用I/O脚,其功能用途由软件定义,在本设计中,P0端口(32~39脚)被定义为N1功能控制端口,分别与N1的相应功能管脚相连接,13脚定义为IR输入端,10脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12脚、27脚及28脚定义为握手信号功能端口,连接主板CPU的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。

P0口:

P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。

作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0写“1”时,可作为高阻抗输入端用。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口:

P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。

作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

与AT89C51不同之处是,P1.0和P1.1还可分别作为定时/计数器2的外部计数输入(P1.0/T2)和输入(P1.1/T2EX)。

Flash编程和程序校验期间,P1接收低8位地址。

P2口:

P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对端口P2写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。

在访问8位地址的外部数据存储器(如执行MOVX@RI指令)时,P2口输出P2锁存器的内容。

Flash编程或校验时,P2亦接收高位地址和一些控制信号。

P3口:

P3口是一组带有内部上拉电阻的8位双向I/O口。

P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。

对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。

此时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。

RST:

复位输入。

当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

ALE/PROG:

当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。

一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。

要注意的是:

每当访问外部数据存储器时将跳过一个AL脉冲。

对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。

该位置位后,只有一条MOVX和MOVC指令才能将ALE激活。

此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE禁止位无效。

PSEN:

程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。

在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP:

外部访问允许。

欲使CPU仅访问外部程序存储器(地址为0000H—FFFFH),EA端必须保持低电平(接地)。

需注意的是:

如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端为高电平(接Vcc端),CPU则执行内部程序存储器中的指令。

Flash存储器编程时,该引脚加上+12V的编程允许电源Vpp,当然这必须是该器件是使用12V编程电压Vpp。

XTAL1:

振荡器反相放大器的及内部时钟发生器的输入端。

XTAL2:

振荡器反相放大器的输出端。

单片机最小原理图如图2-2-2所示。

图2-2-2单片机最小系统

单片机最小系统说明:

时钟信号的产生:

在MCS-51芯片内部有一个高增益反相放大器,其输入端为芯片引脚XTAL1,其输出端为引脚XTAL2。

而在芯片的外部,XTAL1和XTAL2之间跨接晶体振荡器和微调电容,从而构成一个稳定的自激振荡器,这就是单片机的时钟振荡电路。

时钟电路产生的振荡脉冲经过触发器进行二分频之后,才成为单片机的时钟脉冲信号。

一般地,电容C2和C3取30pF左右,晶体的振荡频率范围是1.2-12MHz。

如果晶体振荡频率高,则系统的时钟频率也高,单片机的运行速度也就快。

单片机复位使CPU和系统中的其他功能部件都处在一个确定的初始状态下,并从这个状态开始工作。

单片机复位条件:

必须使9脚加上持续两个机器周期(即24个振荡周期)的高电平。

2.2.3液晶显示电路

LCD1602分为带背光和不带背光两种,基控制器大部分为HD44780,带背光的比不带背光的厚,是否带背光在应用中并无差别,两者尺寸差别如下图2-2-3所示:

LCD1602的主要技术参数:

1、显示容量:

16×

2个字符

2、芯片工作电压:

4.5—5.5V

3、工作电流:

2.0mA(5.0V)

4、模块最佳工作电压:

5.0V

5、字符尺寸:

2.95×

4.35(W×

H)mm

引脚功能说明

LCD1602采用标准的14脚(无背光)或16脚(带背光)接口,各引脚接口说明如图2-2-4所示:

编号

符号

引脚说明

1

VSS

电源地

9

D2

数据

2

VDD

电源正极

10

D3

3

VL

液晶显示偏压

11

D4

4

RS

数据/命令选择

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高中教育 > 理化生

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1