中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx

上传人:b****2 文档编号:14283311 上传时间:2022-10-21 格式:DOCX 页数:29 大小:429.22KB
下载 相关 举报
中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx_第1页
第1页 / 共29页
中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx_第2页
第2页 / 共29页
中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx_第3页
第3页 / 共29页
中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx_第4页
第4页 / 共29页
中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx_第5页
第5页 / 共29页
点击查看更多>>
下载资源
资源描述

中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx

《中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx(29页珍藏版)》请在冰豆网上搜索。

中考选择填空压轴题专题10选择填空方法综述Word文档下载推荐.docx

例2.如图,菱形ABCD的边长为6,∠ABC=120°

,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是(  )

同类题型2.1如图,已知菱形OABC的边OA在x轴上,点B的坐标为(8,4),点P是对角线OB上的一个动点,点D(0,2)在y轴上,当CP+DP最短时,点P的坐标为____________.

同类题型2.2如图,在平面直角坐标系中,反比例函数(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是(  )

A.B.10C.D.

同类题型2.3

例3.如图,正方形ABCD中.点E,F分别在BC,CD上,△AEF是等边三角形.连接AC交EF于点G.过点G作GH⊥CE于点H,若=3,则=(  )

A.6B.4C.3D.2

同类题型3.1如图,在等腰Rt△ABC中,∠ABC=90°

,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°

,若ED的长为m,则△BEF的周长是___________(用含m的代数式表示).

同类题型3.2如图,在矩形ABCD中,AB=2,,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是(  )

A.1B.C.D.

同类题型3.3如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=__________.

同类题型3.4如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°

.若,则CE=_________.

例4.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:

①AF⊥BE;

②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;

③线段DG的最小值为-2;

④当线段DG最小时,△BCG的面积.其中正确的命题有

____________.(填序号)

同类题型4.1如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:

①△AEF∽△CAB;

③DF=DC;

④CF=2AF,正确的是(  )

A.①②③B.②③④C.①③④D.①②④

同类题型4.2点E、F分别在平行四边形ABCD的边BC、AD上,BE=DF,点P在边AB上,AP:

PB=1:

n(n>1),过点P且平行于AD的直线l将△ABE分成面积为、的两部分,将△CDF分成面积为、的两部分(如图),下列四个等式:

①:

=1:

n

②:

(2n+1)

③):

)=1:

④):

)=n:

(n+1)

其中成立的有(  )

A.①②④B.②③C.②③④D.③④

同类题型4.3如图,在矩形ABCD中,DE平分∠ADC交BC于点E,点F是CD边上一点(不与点D重合).点P为DE上一动点,PE<PD,将∠DPF绕点P逆时针旋转90°

后,角的两边交射线DA于H,G两点,有下列结论:

①DH=DE;

②DP=DG;

③DP;

④DP﹒DE=DH﹒DC,其中一定正确的是(  )

A.①②B.②③C.①④D.③④

 

例5.如图,在平面直角坐标系中,经过点A的双曲线(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°

,则k的值为______________.

同类题型5.1如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数和在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________.

解:

由图象可以判定:

BE=BC=10cm.DE=4cm,

当点P在ED上运动时,,

∴AB=8cm,

∴AE=6cm,

∴当0<t≤10时,点P在BE上运动,BP=BQ,

∴△BPQ是等腰三角形,

故①正确;

故②错误;

当14<t<22时,点P在CD上运动,该段函数图象经过(14,40)和(22,0)两点,解析式为y=110-5t,

故③正确;

△ABP为等腰三角形需要分类讨论:

当AB=AP时,ED上存在一个符号题意的P点,当BA=BO时,BE上存在一个符合同意的P点,当PA=PB时,点P在AB垂直平分线上,所以BE和CD上各存在一个符号题意的P点,共有4个点满足题意,

故④错误;

⑤△BPQ与△ABE相似时,只有;

△BPQ∽△BEA这种情况,此时点Q与点C重合,即,

∴PC=7.5,即t=14.5.

故⑤正确.

综上所述,正确的结论的序号是①③⑤.

过点Q做QM⊥AB于点M.

当点Q在线段AD上时,如图1所示,

∵AP=AQ=t(0≤t≤5),,

∴t,

∴;

当点Q在线段CD上时,如图2所示,

∵AP=t(5≤t≤8),,

∴t;

当点Q在线段CB上时,如图3所示,

∵+3(利用解直角三角形求出+3),BQ=5+3+5-t=13-t,,

∴(13-t),

∴-13t),

∴-13t)的对称轴为直线.

∵t<13,

∴s>0.

综上观察函数图象可知B选项中的图象符合题意.

选B.

根据题意,

当P在BC上时,三角形面积增大,结合图2可得,BC=4;

当P在CD上时,三角形面积不变,结合图2可得,CD=3;

当P在DA上时,三角形面积变小,结合图2可得,DA=5;

过D作DE⊥AB于E,

∵AB∥CD,AB⊥BC,

∴四边形DEBC是矩形,

∴EB=CD=3,DE=BC=4,=3,

∴AB=AE+EB=3+3=6.

根据图3可得,函数图象的中间一部分为水平方向的线段,

故影子的长度不变,即沿着弧形道路步行,

因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,

故中间一段图象对应的路径为,

又因为第一段和第三段图象都从左往右上升,

所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,

故行走的路线是A→B→D→C(或A→D→B→C),

选D.

同类题型1.4

如图,连接DP,BD,作DH⊥BC于H.

∵四边形ABCD是菱形,

∴AC⊥BD,B、D关于AC对称,

∴PB+PM=PD+PM,

∴当D、P、M共线时,P′B+P′M=DM的值最小,

∵BC=2,

∵∠ABC=120°

∴∠DBC=∠ABD=60°

∴△DBC是等边三角形,∵BC=6,

∴CM=2,HM=1,,

在Rt△DMH中,,

∵CM∥AD,

∴,

∴.

选A.

如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.

在Rt△OBK中,,

∵四边形OABC是菱形,

∴AC⊥OB,GC=AG,,

设OA=AB=x,在Rt△ABK中,∵,

∴x=5,

∴A(5,0),

∵A、C关于直线OB对称,

∴PC+PD=PA+PD=DA,

∴此时PC+PD最短,

∵直线OB解析式为x,直线AD解析式为x+2,

由解得,

∴点P坐标,).

同类题型2.2如图,在平面直角坐标系中,反比例函数(x>0)的图象与边长是6的正方形OAB

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 总结汇报 > 实习总结

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1