初中数学《轴对称》教案精选教育文档Word文档格式.docx
《初中数学《轴对称》教案精选教育文档Word文档格式.docx》由会员分享,可在线阅读,更多相关《初中数学《轴对称》教案精选教育文档Word文档格式.docx(29页珍藏版)》请在冰豆网上搜索。
收集有关窗花的素材,并要求进行剪纸----双喜字或其他窗花.
教学设计
作品展示,交流体会
1.作品展示:
让部分学生展示课前的剪纸作品(可以将作品粘贴到黑板上);
2.小组活动:
(1)在窗花的制作过程中,你是如何进行剪纸的?
为什么要这样?
(2)这些窗花(图案)有什么共同的特点?
注:
通过对收集材料、剪纸操作,增加学生对轴对称图形的感性认识,为轴对称概念的引出作准备.
活动的目的一是为了交流,更主要的是说出(发现)“对称”.
概念形成
(一)轴对称图形
1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.
在学生经历了一系列的过程后让学生尝试归纳,这本身也是一种能力的培养和对轴对称的理解.教学中应该有意识地加以渗透.
2.结合教科书第118页图12.1-1进一步分析轴对称图形的特点,以及对称轴的位置.
3.学生举例:
试举几个在现实生活中你所见到的轴对称例子.
4.概念应用:
(1)教科书第119页练习;
(2)补充:
判断下面的图形是不是轴对称图形?
并简要说明理由.
对于一个概念的建立,让学生经历“实物概括应用”的过程,符合学生的认识规律.
(二)两个图形关于某条直线对称对于第二个概念的建立,分两个步骤进行:
先观察图形,再进行画图.其目的是突出两个图形和这两个图形之间的关系,在这个基础上再给出定义,比较合理.
1.观察教科书第119页中的图12.1-3,思考:
图中的每对图形有什么共同的特点?
2.操作:
取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?
3.两个图形成轴对称的定义.如下图,图形F与图形F
就是关于直线l对称,点A与点A是对称的.
4.举例:
你能举出一些生活中两个图形成轴对称的例子吗?
5.练习:
教科书第120页.
辨析概念
分组讨论:
轴对称图形和两个图形成轴对称这两个概念之间的联系和区别.
讨论后可列表比较如下:
轴对称图形两个图形成轴对称
区别一个图形两个图形
联系1.沿着某条直线对折后,直线两旁的部分都能够互相重合(即直线两旁的两部分全等)
2.都有对称轴(至少一条)
3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线对称;
如果把两个成轴对称的图形看成一个图形,那么这个图形就是轴对称图形
通过讨论、比较,便于进一步理解概念,弄清它们之间的联系和区别,以突破本课的教学难点.采用小组讨论的目的意在引导学生参与,改变学习方式,发挥更佳的学习效果.
实践和应用
1.下列图片是生活中的一些建筑物,它们是轴对称图形吗?
2.下列图形是部分汽车的标志,哪些是轴对称图形?
奔驰 宝马大众 奥迪
3.下图中的两个图形是否成轴对称?
如果是,请找出它的对称轴.
4.请在下图这一组图形符号中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形。
这是从数字1到7组成的轴对称图形,问题有一定的难度,需要学生有较强地观察、辨别能力.
归纳小结
通过本节课的学习,你有什么收获?
主要围绕下列几个问题:
1.概念:
轴对称图形,两个图形关于某条直线对称,对称轴,对称点.
2.找轴对称图形的对称轴.
布置作业
1.必做题;
(1)教科书第125页第1、2题,第126页第6题.
(2)收集3~5幅轴对称的图形.
2.选做题
设计1~2个轴对称的图案.
作业的设计从知识性和趣味性两个方面去考虑.
3.备选题:
备选题主要是为教师提供一些教学的素材.
(1)下列图形是不是轴对称图形?
(2)按如下方法操作,剪一个轴对称图形:
12.1轴对称
(2)
①探索并理解对应点所连的线段被对称轴垂直平分的性质.
②探索并理解线段垂直平分线的两个性质.
③通过观察、实验、猜测、验证与交流等数学活动,初步形成数学学习的方法.
④在数学学习的活动中,养成良好的思维品质.
图形轴对称的性质和线段垂直平分线的性质.
由线段垂直平分线的两个性质得出的“点的集合”的描述.
探究活动所需的木棒、橡皮筋(如教科书第121页的图12.1-6,第122页的图12.1-8).
提出问题
1.下面的图形是轴对称图形吗?
如果是,请说出它的对称轴.
由于本课知识的教学是建立在上一节内容的基础之上,所以安排了两个复习的问题,为问题3的提出做好准备.
2.如果两个图形成轴对称,那么这两个图形有什么关系?
(如下图,△ABC和△AC关于直线MN对称)
3.如图,△ABC和△AC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,线段AA、BB、CC与直线MN有什么关系?
提出问题3并不要求学生马上回答,而是为下一步的探究作准备,如果学生凭观察得出猜测,那么可以通过下一步的实验进行验证.
实验探究
1.折一折.
要解决问题3,我们可以从最简单的一个点开始:
先将一张纸对折,用圆规在纸上穿一个孔,然后再把纸展开,记两个孔的位置为点A和点A,折痕为直线MN(如图3).显然,此时点A和点A关于直线MN对称.连结点A,A,交直线MN于点P.
这里采用让学生动手折一折,目的是让学生在折纸中体验对称性.先选取一个点进行实验,一是解决一个点,就解决了其他的点,二是从简单入手分析问题本身是我们处理和解决问题的一种手段.
2.说一说.
观察图形,线段AA与直线MN有怎样的位置关系?
你能说明理由吗?
(让学生能说出如下关系:
AP=PA,MPA=MPA=90)
类似地,点B与点B,点C与点C是否也有同样的关系?
你能用语言归纳上述发现的规律吗?
(对称轴所在的直线经过对称点所连线段的中点,并且垂直于这条线段)
在这个基础上,教师给出垂直平分线的概念,然后把上述规律概括成图形轴对称的性质(教科书第121页)
3.想一想.
上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢?
(结合教科书第121页的图12.1-5让学生说明)
从而得出:
类似地,轴对称图形的对称轴,是任何一对对应点连线的垂直平分线.
从折一折到说一说、想一想,其意图是把这个教学过程设计成让学生主动地参与进来,转变以往的学习方式.
合作探究
探究一:
教科书第121页的“探究”.
学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB,再画出它的垂直平分线MN,在MN上任意取点P1,P2,P3(如图4),分别量一量点P1,P2,P3到A与B的距离,你有什么发现?
请与同伴交流.
处理方式:
要求学生在独立尝试、独立思考的基础上进行合作交流,然后小组汇报.学生可以量一量、折一折,也可以运用第十三章的知识证明三角形全等.
在学生充分讨论的基础上归纳出:
线段垂直平分线上的点与这条线段两个端点的距离相等.
合作与交流是目前课堂教学中比较缺乏的一种教学方式,在教学中应创造条件引导学生积极参与,同时教师应组织好,引导好.把垂直平分线的性质与全等三角形的知识结合起来,既能复习以往的知识,又能使新知识得到应用,便于加深对新知识的理解和掌握.
想一想:
如图5,我们在教科书第99页的练习1中,应用三角形全等的知识说明了CB=CB,你能运用今天所学的知识给出解释吗?
问题:
反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?
探究二:
如图6,PA=PB,取线段AB的中点O,连结PO,PO与AB有怎样的位置关系?
由于教科书第122页上的探究活动实际上是这样的一个数学问题:
“如图6,已知OA=OB,PA,PB满足什么条件时,OPAB?
”这与上述命题的逆命题不完全一致,所以本设计改用直接的数学问题.
学生可以运用三角形全等的知识判定△PAO≌△PBO,从而有POA=POB=90,于是POAB,即PO是线段AB的垂直平分线.从而得出:
与一条线段两个端点距离相等的点在这条线段的垂直平分线上.
归纳结论:
见教科书第122页的最后一段话.
(注意:
应该从正逆两个角度,结合具体的图形进行归纳)
教科书第122页的最后一段话比较抽象,以教师讲解为主,可以结合角平分线的性质.
在教师的引导下,由学生讲述解题方法,教师给出解题过程.
3.练习:
教科书第123页.
小结提高
让学生从以下几方面去思考:
1.本节课你学到了什么?
(1)从知识上:
一个概念(线段的垂直平分线),四条性质(轴对称图形的性质、垂直平分线的性质);
(2)从方法上:
合作探究是数学学习的一种重要方法,数学与实际问题的联系.
2.轴对称图形的性质与线段垂直平分线的性质之间的联系;
在解决问题的过程中所看到的新旧知识之间的联系(如全等三角形).
作业布置
1.必做题:
教科书第125页第3题,第126页第5、9题.
2.选做题:
教科书第126页第11题,第127页第12题.
(1)图8是某跨河大桥的斜拉索,图中PA=PB,POAB,则必有AO=BO,为什么?
(2)如图9,△ABC中,AC=16cm,DE为AB的垂直平分线,△BCE的周长为26cm,求BC的长.
(3)有A、B、C三个村庄(如图10),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.
12.1轴对称(3)
①了解线段垂直平分线的画法.
②会画两个成轴对称的图形(或一个轴对称图形)的对称轴.
③通过画图和欣赏,陶冶学生的审美情操.
画图形的对称轴.
对对称轴画法的理解.
问题1:
如果我们感觉两个平面图形是成轴对称的,你准备用什么方法去验证?
问题2:
两个成轴对称的图形,不经过折叠,你用什么方法画出它的对称轴?
问题1是让学生能说出折叠法验证,这一方面是复习轴对称的知识,另一方面也是加深对轴对称的理解.提出问题2是引起学生的思考,以引出新课.
学习新知
我们已经知道,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.因此我们只要找到这两个图形的一对对应点,然后画出以这两个对应点为端点的线段的垂直平分线就可以了.如何画一条线段的垂直平分线呢?
例1(补充)已知线段AB(如图1),用直尺和圆规作线段AB的垂直平分线.
图1
教科书第123页上的例题是以线段的垂直平分线为基础的,所以这里就先给出线段的垂直平分线的作法,而这也恰恰是课标要求的基本尺规作图之一.
可按如下的步骤进行:
(1)教师启发:
根据线段垂直平分线的性质,只要找到与A,B两点的距离相等的两个点即可.
(2)作图示范.写出作法,根据作法一步一步地作出图形.
(3)解后反思:
①在上述作法中,为什么有CA=CB,DA=DB?
②如图2,直线CD与AB的交点就是线段AB的中点,因此用这种方法可以作出线段的中点;
③你还有其他的方法画一条线段的垂直平分线吗?
反思是一种重要的思维品质,也是我们传统的教