北师大版数学八年级上册知识点总结1Word格式文档下载.docx
《北师大版数学八年级上册知识点总结1Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《北师大版数学八年级上册知识点总结1Word格式文档下载.docx(15页珍藏版)》请在冰豆网上搜索。
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;
若|a|=-a,则a≤0。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴
规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算
三、平方根、算术平方根和立方根
1、算术平方根:
一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。
特别地,0的算术平方根是0。
表示方法:
记作“”,读作根号a。
性质:
正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:
一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。
正数a的平方根记做“”,读作“正、负根号a”。
一个正数有两个平方根,它们互为相反数;
零的平方根是零;
负数没有平方根。
开平方:
求一个数a的平方根的运算,叫做开平方。
注意的双重非负性:
0
3、立方根
一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。
记作
一个正数有一个正的立方根;
一个负数有一个负的立方根;
零的立方根是零。
注意:
,这说明三次根号内的负号可以移到根号外面。
四、实数大小的比较
1、实数比较大小:
正数大于零,负数小于零,正数大于一切负数;
数轴上的两个点所表示的数,右边的总比左边的大;
两个负数,绝对值大的反而小。
2、实数大小比较的几种常用方法
(1)数轴比较:
在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:
设a、b是实数,
(3)求商比较法:
设a、b是两正实数,
(4)绝对值比较法:
设a、b是两负实数,则。
(5)平方法:
五、算术平方根有关计算(二次根式)
1、含有二次根号“”;
被开方数a必须是非负数。
2、性质:
(1)
(2)
(3)()
(4)()
3、运算结果若含有“”形式,必须满足:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式;
(3)分母中不能含有根号。
六、实数的运算
(1)六种运算:
加、减、乘、除、乘方、开方
(2)实数的运算顺序
先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法对加法的分配律
第三章位置与坐标
一、在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念
1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;
铅直的数轴叫做y轴或纵轴,取向上为正方向;
x轴和y轴统称坐标轴。
它们的公共原点O称为直角坐标系的原点;
建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
[注意]:
x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念
●对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
●点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
●平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征
(1)、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
(2)、坐标轴上的点的特征
点P(x,y)在x轴上,x为任意实数
点P(x,y)在y轴上,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点
(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数
(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
(5)、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
(6)、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
三、坐标变化与图形变化的规律:
坐标(x,y)的变化
图形的变化
x×
a或y×
a
被横向或纵向拉长(压缩)为原来的a倍
a,y×
放大(缩小)为原来的a倍
(-1)或y×
(-1)
关于y轴或x轴对称
(-1),y×
关于原点成中心对称
x+a或y+a
沿x轴或y轴平移a个单位
x+a,y+a
沿x轴平移a个单位,再沿y轴平移a个单
第四章一次函数
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤
(1)列表:
列表给出自变量与函数的一些对应值
(2)描点:
以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:
按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数
1、正比例函数和一次函数的概念
●一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
●特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像:
所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;
正比例函数的图像是经过原点(0,0)的直线。
k的符号
b的符号
函数图像
图像特征
k>
b>
y
0x
图像经过一、二、三象限,y随x的增大而增大。
b<
图像经过一、三、四象限,y随x的增大而增大。
K<
图像经过一、二、四象限,y随x的增大而减小
图像经过二、三、四象限,y随x的增大而减小。
注:
当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>
0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<
0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
0时,y随x的增大而增大
0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。
确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。
解这类问题的一般方法是待定系数法。
7、一次函数与一元一次方程的关系:
任何一个一元一次方程都可转化为:
kx+b=0(k、b为常数,k≠0)的形式.而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.
结论:
由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:
当一次函数值为0时,求相应的自变量的值.
从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
第五章二元一次方程组
1、二元一次方程
含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
3、二元一次方程组
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
4二元一次方程组的解
二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
5、二元一次方程组的解法
(1)代入(消元)法
(2)加减(消元)法
6、一次函数与二元一次方程(组)的关系:
(1)一次函数与二元一次方程的关系:
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解
(2)一次函数与二元一次方程组的关系:
二元一次方程组的解可看作两个一次函数
和的图象的交点。
当函数图象有交点时,说明相应的二元一次方程组有解;
当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
第六章数据的分析
1、刻画数据的集中趋势(平均水平)的量:
平