新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx

上传人:b****2 文档编号:14064988 上传时间:2022-10-17 格式:DOCX 页数:10 大小:164.20KB
下载 相关 举报
新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx_第1页
第1页 / 共10页
新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx_第2页
第2页 / 共10页
新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx_第3页
第3页 / 共10页
新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx_第4页
第4页 / 共10页
新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx

《新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx》由会员分享,可在线阅读,更多相关《新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx(10页珍藏版)》请在冰豆网上搜索。

新课标精品卷最新北师大版高中数学必修五《解三角形的实际应用举例》课时作业及解析Word格式.docx

C.10kmD.10km

【答案】 D

【解析】 如图,△ABC中,AB=10,BC=20,B=120°

,由余弦定理得,

AC2=AB2+BC2-2AB·

BC·

cos120°

=102+202-2×

10×

20×

=700,

∴AC=10km.∴选D.

3.在一幢20m高的楼顶测得对面一塔顶的仰角为60°

,塔基的俯角为45°

(如图所示),那么这座塔的高是(  )

A.20mB.20(1+)m

C.10(+)mD.20(+)m

【答案】 B

【解析】 由题意知CE=AE·

tan60°

=20.

∴CD=DE+CE=20+20=20(1+).

4.在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°

,60°

,则塔高为(  )

A.mB.m

C.mD.m

【答案】 A

【解析】 作出示意图如图,由已知:

在Rt△OAC中,

OA=200m,∠OAC=30°

,则OC=OA·

tan∠OAC=200tan30°

=(m).

在Rt△ABD中,AD=m,∠BAD=30°

,则BD=AD·

tan∠BAD=·

tan30°

=(m),

∴BC=CD-BD=200-=(m).

5.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°

,灯塔B在观察站C的南偏东40°

,则灯塔A与灯塔B的距离为(  )

A.akmB.akm

C.akmD.2akm

【解析】 易知∠ACB=120°

,在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·

BCcos120°

=2a2-2a2×

(-)=3a2,

∴AB=a(km).

6.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°

距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为(  )

A.海里/时B.34海里/时

C.海里/时D.34海里/时

【解析】 如图所示,在△PMN中,=,∴MN==34,

∴v==(海里/时).

7.线段AB外有一点C,∠ABC=60°

,AB=200km,汽车以80km/h的速度由A向B行驶,同时摩托车以50km/h的速度由B向C行驶,则运动开始________h后,两车的距离最小.(  )

A.B.1

C.D.2

【解析】 如图所示,设th后,汽车由A行驶到D,摩托车由B行驶到E,则AD=80t,BE=50t.因为AB=200,所以BD=200-80t,问题就是求DE最小时t的值.

由余弦定理,得DE2=BD2+BE2-2BD·

BEcos60°

=(200-80t)2+2500t2-(200-80t)·

50t=12900t2-42000t+40000.

当t=时,DE最小.

二、填空题(每小题5分,共15分)

8.△ABC的内角A,B,C的对边分别为a,b,c.若c=2,b=,B=60°

,则a=________.

【答案】 1+

【解析】 由余弦定理可得a2+4-2×

2a·

cos60°

=6,即a2-2a-2=0,

∴a=1±

,∵a>

0,∴a=1+.

9.如图,为了测定河的宽度,在一岸边选定两点A,B和对岸标记物C,测得∠CAB=30°

,∠CBA=45°

,AB=120米,则河的宽度为________米.

【答案】 60(-1)

【解析】 过C点作CD⊥AB于D,设BD=x,则CD=x,AD=120-x,又∵∠CAB=30°

∴=,解之得,x=60(-1).

10.某海域上有A、B、C三个小岛,已知A,B之间相距8nmile,A,C之间相距5nmile,在A岛测得∠BAC为60°

,则B岛与C岛相距________nmile.

【答案】 7

【解析】 由题意知BC2=AB2+AC2-2AB·

ACcos60°

=82+52-2×

=49,则B岛与C岛相距7nmile.

三、解答题(共50分,解答应写出必要的文字说明、证明过程或演算步骤)

11.(15

分)A、B是一条河岸边两点,相距800m,河对岸有一铁塔,在A点测得塔顶C的仰角为45°

,∠BAD=120°

,又在B点测得∠ABD=45°

,其中D是点C到水平面的垂足,求塔高CD.

【解析】 解:

由于CD⊥平面ABD,∠CAD=45°

,所以CD=AD.因此,只需在△ABD中求出AD即可.

在△ABD中,∠BDA=180°

-45°

-120°

=15°

由=,得AD===800(+1)(m).

∴CD=AD=800(+1)≈2186(m).

12.(15分)如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量.已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,求∠DEF的余弦值.

【解析】 本题主要考查正弦定理和余弦定理的应用,考查学生分析问题和解决问题的能力.

解:

作DM∥AC交BE于N,交CF于M.

DF===10,

DE===130,

EF===150.

在△DEF中,由余弦定理

cos∠DEF=

==.

13.(20分)某市电力部门在一次救灾过程中,需要在A,B两地之间架设高压电线,因地理条件限制,不能直接测量A,B两地距离.现测量人员在相距km的C,D两地(假设A,B,C,D在同一平面上),测得∠ACB=75°

,∠BCD=45°

,∠ADC=30°

,∠ADB=45°

(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度大约是A,B距离的倍,问施工单位至少应准备多长的电线?

【解析】 在△ACD中,由已知可得,∠CAD=30°

,所以AC=km,

在△BCD中,由已知可得,∠CBD=60°

,sin75°

=sin(45°

+30°

)=.

由正弦定理,得BC==.

cos75°

=cos(45°

)=,

在△ABC中,由余弦定理,得

AB2=AC2+BC2-2AC·

BCcos∠BCA=()2+()2-2·

·

=5.

所以AB=(km).

施工单位应准备的电线长为km.

答:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 医药卫生 > 基础医学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1