大学物理习题册答案 2Word文档下载推荐.docx
《大学物理习题册答案 2Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《大学物理习题册答案 2Word文档下载推荐.docx(30页珍藏版)》请在冰豆网上搜索。
(A);
(B);
(C);
(D)。
(B)振幅矢量转过的角度,所需时间,
4.分振动表式分别为和(SI制)则它们的合振动表达式为:
(C)
(C);
(C)作旋转矢量图或根据下面公式计算
;
5.两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为和,且,则两弹簧振子的周期之比为(B)
(B)弹簧振子的周期,,,
6.一轻弹簧,上端固定,下端挂有质量为m的重物,其自由振动的周期为T.今已知振子离开平衡位置为x时,其振动速度为v,加速度为a.则下列计算该振子劲度系数的公式中,错误的是:
(B)
(A);
(B);
(C);
(D)。
解:
7.两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动表式为x1=Acos(ωt+α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动表式为(B)
(A);
(B)作旋转矢量图
8.一质点沿x轴作简谐振动,振动表式为(SI制)。
从t=0时刻起,到质点位置在x=-2cm处,且向x轴正方向运动的最短时间间隔为(C)
(C)作旋转矢量图
二、填空题
1.一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A=______;
ω=______;
φ0=______。
由图可知,,,
作旋转矢量得
2.单摆悬线长,在悬点的铅直下方处有一小钉,如图所示。
则单摆的左右两方振动周期之比为。
单摆周期,
3.一质点沿x轴作简谐振动,振动范围的中心点为x轴的原点。
已知周期为T,振幅为A。
(1)若t=0时质点过x=0处且朝x轴正方向运动,则振动方程为x=________。
(2)若t=0时质点处于处且向x轴负方向运动,则振动方程为x=_____。
作旋转矢量图,由图可知
(1);
(2)
4.有两个相同的弹簧,其劲度系数均为,
(1)把它们串联起来,下面挂一个质量为的重物,此系统作简谐振动的周期为;
(2)把它们并联起来,下面挂一质量为的重物,此系统作简谐振动的周期为。
两个相同弹簧串联,劲度系数为,;
两个相同弹簧并联,劲度系数为,.
5.质量为的物体和一轻质弹簧组成弹簧振子,其固有振动周期为,当它作振幅为的自由简谐振动时,其振动能量=。
弹簧振子振动周期,,振动能量
6.若两个同方向、不同频率的谐振动的表达式分别为和,则它们的合振动频率为,拍频为。
,,合振动频率,拍频
7.两个同方向的简谐振动曲线如图所示。
合振动的振幅为________________,合振动的振动方程为___________________。
作旋转矢量图;
三、计算题
1.质量m=10g的小球按如下规律沿x轴作简谐振动:
(SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值以及振动的能量。
圆频率,周期,振幅,初相
振动速度最大值,
加速度最大值
振动的能量
2.边长为的一立方体木块浮于静水中,其浸入水中部分的深度为,今用手指沿竖直方向将其慢慢压下,使其浸入水中部分的深度为,然后放手任其运动。
若不计水对木块的粘滞阻力,试证明木块作简谐运动,并求振动的周期和振幅。
(水和木块的密度分别为)
木块平衡时:
取液面为坐标原点,向下为轴正向,当木块浸入水中深度增加时
,,,
3.一水平放置的弹簧振子,振动物体质量为0.25kg,弹簧的劲度系数。
(1)求振动的周期T和角频率ω;
(2)以平衡位置为坐标原点。
如果振幅A=15cm,t=0时物体位于x=7.5cm处,且物体沿x轴反向运动,求振动的表达式;
(3)求振动速度的表达式。
(1)角频率,
(2)作旋转矢量图,由图可知
(SI制),(3)(SI制)
4.一个弹簧振子作简谐振动,振幅,如弹簧的劲度系数,所系物体的质量,试求:
(1)当系统动能是势能的三倍时,物体的位移是多少?
(2)物体从正的最大位移处运动到动能等于势能的三倍处所需的最短时间是多少?
解
(1)由题意,,,得,
(2)由题意知,
作旋转矢量图知:
,最短时间为
5.有两个同方向、同频率的简谐振动,它们的振动表达式为:
,(SI制)
(1)求它们合成振动的振幅和初相。
(2)另有一个振动,问为何值时,的振幅最大;
为何值时,的振幅最小。
(1)由图可知,
(2)的振幅最大时;
的振幅最小时,
练习十四
平面简谐波、波的能量
1.一个平面简谐波沿轴负方向传播,波速。
处,质点振动曲线如图所示,则该波的表达式(SI制)为(B)
(B);
(D)。
(B)由图可知,处质点振动方程
波的表达式
2.一个平面简谐波沿轴正方向传播,波速为,时刻的波形图如图所示,则该波的表达式(SI制)为(C)
解:
(C)由图可知,,,
设处质点振动方程为,时处质点位移为零且向轴正向运动,作旋转矢量图知,
3.一平面简谐波以速度u沿x轴正方向传播,在t=t'时波形曲线如图所示.则坐标原点O的振动方程为(D)
(B);
(D)。
(D)由图可知,,
时处质点位移为零且向轴正向运动,,,
4.一个平面简谐波在弹性媒质中传播,媒质质元从最大位移处回到平衡位置的过程中(C)
(A)它的势能转化成动能;
(B)它的动能转化成势能;
(C)它从相邻的媒质质元获得能量,其能量逐渐增加;
(D)把自己的能量传给相邻的媒质质元,其能量逐渐减小。
(C)质元的动能,势能,质元由最大位移处回到平衡位置过程中,和由到最大值.
5.一平面简谐波在弹性媒质中传播时,在传播方向上某质元在某一时刻处于最大位移处,则它的(B)
(A)动能为零,势能最大;
(B)动能为零,势能也为零;
(C)动能最大,势能也最大;
(D)动能最大,势能为零。
(B)质元的动能,势能,质元在最大位移处,和均为.
6.频率为100Hz,传播速度为300m/s的平面简谐波,波线上距离小于波长的两点振动的相位差为,则此两点相距(C)
(A)2.86m;
(B)2.19m;
(C)0.5m;
(D)0.25m。
(C)波长,,,
7.在同一媒质中两列频率相同的平面简谐波强度之比是,则两列波的振幅之比为
(C);
(D)0.25。
(B)
(B)波强,
8.在下面几种说法中,正确的是:
(C)
(A)波源不动时,波源的振动周期与波动的周期在数值上是不同的;
(B)波源振动的速度与波速相同;
(C)在波传播方向上,任一质点的振动位相总是比波源的位相滞后;
(D)在波传播方向上,任一质点的振动位相总是比波源的位相超前。
(C)在波传播方向上,任一质点的振动位相总是比波源的位相滞后
1.产生机械波的必要条件是和。
波源,介质.
2.一平面简谐波的周期为,在波的传播路径上有相距为的、两点,如果点的位相比点位相落后,那么该波的波长为,波速为。
,,,
3.我们(填能或不能)利用提高频率的方法来提高波在媒质中的传播速度。
不能.波速由媒质的性质决定.
4.处于原点()的一波源所发出的平面简谐波的波动方程为,其中、、皆为常数。
此波的速度为;
波的周期为;
波长为;
离波源距离为l处的质元振动相位比波源落后;
此质元的初相位为。
,,
,,初相
5.一平面简谐波沿轴正向传播,波动方程为,则处质点的振动方程为,处质点的振动和处质点的振动的位相差为。
波方程中用特定值表示后即表示特定质点振动方程
6.一平面简谐波(机械波)沿x轴正方向传播,波动表达式为(SI制),则x=-3m处媒质质点的振动加速度a的表达式为____________________________。
1.一平面简谐波,振动周期s,波长λ=10m,振幅A=0.1m。
当t=0时,波源振动的位移恰好为正方向的最大值。
若坐标原点和波源重合,且波沿x轴正方向传播,求:
(1)波源的振动表达式;
(2)简谐波的波动表达式;
(3)x1=λ/4处质点,在t2=T/2时刻的位移和振动速度。
由题意可知,
(1)设波源的振动表达式为,,,
(2)波动表达式(SI制)
(3)将代入波动表达式得:
振动速度
将代入,
2.一振幅为0.1m,波长为2m的平面简谐波。
沿x轴正向传播,波速为1m/s。
t=2s时,x=1m处的质点处于平衡位置且向正方向运动。
求:
(1)原点处质点的振动表达式;
(2)波的表达式;
(3)在x=1.5m处质点的振动表达式.
(2)设x=1m处的质点振动表达式
因为t=2s时,该质点处于平衡位置且向正方向运动
所以,,,
波的表达式为(SI制)
(1)令得,(SI制)
(3)令得,(SI制)
3.一平面简谐波在介质中以速度沿轴负方向传播,如图所示。
已知点的振动表式为(SI制)。
(1)以为坐标原点写出波动表达式。
(2)以距点处的点为坐标原点,写出波动表达式。
(1)(SI制)
(2)(SI制)
4.某质点作简谐振动,周期为2s,振幅为0.06m,t=0时刻,质点的位移为0.03m,且向正方向运动,求:
(1)该质点的振动表达式;
(2)此振动以速度u=2m/s沿x轴负方向传播时,波的表达式;
(3)该波的波长。
(1)由题意可知,
设振动表达式为,
t=0时刻,质点的位移为0.03m,且向正方向运动,,,
(2)波的表达式(SI制)
(3)波长
5.一列沿正向传播的简谐波,已知和时的波形如图所示。
(假设周期)试求
(1)点的振动表达式;
(2)此波的波动表式;
(3)写出点振动方程并画出点的振动曲线。
由图可知
(1)点振动表达式(SI制)
(2)波动表式(SI制)
(3)点振动方程(SI制)
6.一平面简谐声波,沿直径为0.14m的圆柱形管行进,波的强度为9.0´
103W/m2,频率为300Hz,波速为300m/s。
问:
(1)波的平均能量密度和最大能量密度是多少?
(2)每两个相邻的、相位差为的同相面间有多少能量?
解
(1),
练习十五