详细解析上海高考数学理科Word格式文档下载.docx

上传人:b****0 文档编号:13922888 上传时间:2022-10-15 格式:DOCX 页数:14 大小:434.26KB
下载 相关 举报
详细解析上海高考数学理科Word格式文档下载.docx_第1页
第1页 / 共14页
详细解析上海高考数学理科Word格式文档下载.docx_第2页
第2页 / 共14页
详细解析上海高考数学理科Word格式文档下载.docx_第3页
第3页 / 共14页
详细解析上海高考数学理科Word格式文档下载.docx_第4页
第4页 / 共14页
详细解析上海高考数学理科Word格式文档下载.docx_第5页
第5页 / 共14页
点击查看更多>>
下载资源
资源描述

详细解析上海高考数学理科Word格式文档下载.docx

《详细解析上海高考数学理科Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《详细解析上海高考数学理科Word格式文档下载.docx(14页珍藏版)》请在冰豆网上搜索。

详细解析上海高考数学理科Word格式文档下载.docx

个数为 _____ 个.

【答案】1

【解析】由,可得,∴或,检验知符合题意,∴,时,;

时,,∴的元素个数为1个,故答案为1.

【点评】本题考查集合的化简,考查学生的计算能力,属于基础题.

5.抛物线的焦点坐标为 ______ .

【解析】由得,,表示顶点在,开口向上的抛物线,,∴故焦点坐标是.

【点评】本题考查抛物线的标准方程,以及简单性质的应用,求出抛物线的顶点坐标和p是解题的关键.

6.设数列是公比为的等比数列,是它的前项和,若,则此数列的首项的取值范围为 _____ .

【解析】若该等比数列是一个递增的等比数列,则不会有极限.因此这是一个无穷递缩等比数列.设公比为,则,.而等比数列前项和,因此,而根据极限的四项运算法则有,,因此,解得.

【点评】本题是中档题,考查等比数列前n项和的极限问题,注意公比的范围,是解题的关键,考查计算能力.

7.某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现

在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要不同的素菜品种 _____ 种.(结果用数值表示)

【答案】7

【解析】设素菜种,则,所以的最小值为7.

【点评】正确应用乘法计数原理,组合数以及不等式运算,为最小正整数.

8.在的展开式中,常数项为 _____ .

【答案】15

【解析】由于

,故展开式中,常数项为.

【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

9.设,且,则的取值范围是 _____ .

【解析】由题意可得,而表示在区间上余弦值等于的一个角,∴,故答案为.

【点评】本题主要考查正弦函数的定义域和值域,反余弦函数的意义,属于中档题.

10.直线与曲线(为参数)的交点坐标是 _____ .

【解析】∵,∴曲线方程化为,与直线联立,解得或,由,故不合题意,舍去,则直线与曲线的交点坐标为.

【点评】此题考查了参数方程与普通方程的转化,二倍角的余弦函数公式,以及正弦函数的值域,熟练掌握二倍角的余弦函数公式是解本题的关键

11.已知两个圆:

①;

②,则由①式减去②式可得上述两个圆

的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为 _____ .

【答案】设圆方程①,②(或,

则由①—②,得两圆的对称轴方程.

【解析】将上述命题在曲线仍为圆的情况下加以推广:

设圆方程①,②(或),由①—②,得两圆的对称轴方程.

【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:

(1)找出两类事物之间的相似性或一致性;

(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).在解决类似题目时,一定要注意观察原题特点,找到其特征,再类比写结论.

12.据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一.左下图表示我国土地沙化总面积在20世纪五六十年代、七八十年代、九十年代的变化情况,由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在右下图中图示为_______ .

【解析】1950﹣1970:

土地沙化面积增加了(万平方公里),

平均沙化面积为:

(万平方千米)(百平方公里)

1970﹣1990:

(万平方千米)(百平方公里);

1990﹣2000:

(万平方千米)(百平方公里).如上图.

【点评】本题主要考查了函数的图象与图想的变化,考查了变量的变化与平均变化的基本概念,考查了识图、作图的能力.

二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,选对得4分,不选、选错或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分.

13.是直线和直线平行且不重合的

A.充分非必要条件B.必要非充分条件

C.充要条件D.既非充分也非必要条件

【答案】C

【解析】当时,两直线分别为,∴两直线斜率相等,则平行且不重合;

若两直线平行且不重合,则,∴综上所述,是两直线平行且不重合的充要条件.故选C.

【点评】本题以直线为载体,考查四种条件.判定两条直线位置关系的时候,注意到直线一般式系数满足的关系式.

14.如图,在平行六面体中,为与的交点,若,

.则下列向量中与相等的向量是

A.B.

C.D.

【答案】A

【解析】由题意可得

【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,属于基础题.

15.已知为两条不同的直线,为两个不同的平面,且,则下列命题中的假命题是

A.若,则B.若,则

C.若相交,则相交D.若相交,则相交

【答案】D

【解析】略.

16.用计算器验算函数的若干个值,可以猜想下列命题中的真命题只能是

A.在上是单调减函数B.的值域为

C.有最小值D.

【解析】∵的导数,,

∴当时,;

当时,.

可得函数在上为增函数,在为减函数,最大值,值域为,由此可得A、B、C三项都不正确.

由极限的运算法则,可得,D项正确.

【点评】本题给出关于函数的几个结论,要我们找出其中的正确结论,着重考查了利用导数研究函数的单调性、函数的值域求法和极限的运算法则等知识,属于中档题.

三.解答题(本大题满分86分)本大题共有6题,解答下列各题必须写出必要的步骤.

17.(本题满分12分)

已知是中的对边,是的面积,若

,求的长度.

【解】∵,∴,......(4分)

于是,或,......(6分)

又......(8分)

当时,,;

......(10分)

当时,,.......(12分)

故的长度为或.

【点评】本题主要考查了三角形面积公式,余弦定理等知识解三角形,属于基础试题.

18.(本题满分12分)

设为椭圆的两个焦点,为椭圆上的一点,已知是一个直角三角形的三个顶点,且,求的值.

【解】解法一:

由已知得.......(4分)

根据直角的不同位置,分两种情况:

若为直角,则,即,

得,故;

......(9分)

得,故.......(12分)

解法二:

由椭圆的对称性不妨设,

则由已知可得.......(4分)

若为直角,则,于是,故;

...(9分)

若为直角,则,

解得,即,

于是,故.......(12分)

(说明:

两种情况,缺少一种扣3分).

【点评】本题考查椭圆的定义和标准方程,以及椭圆的简单性质的应用,体现了分类讨论的数学思想,注意考虑轴时的情况.

19.(本题满分14分)本题有2个小题,第1小题满分6分,第2小题满分8分.

在棱长为的正方体中,分别是棱上的动点,且.

(Ⅰ)求证:

(Ⅱ)当三棱锥的体积取得最大值时,求二面角的大小.(结果用反三角函数表示)

【解】

(I)证明:

如图,以为原点建立空间直角坐标系.

设,则,

∴.......(4分)

∵,

∴.......(6分)

(II)记,则,

三棱锥的体积,

当且仅当时,等号成立.

因此,三棱锥的体积取得最大值时,.......(10分)

过作交于,连,可知.

∴是二面角的平面角.

在直角三角形中,直角边,是斜边上的高,

∴,

故二面角的大小为.......(14分)

【点评】本题考查线线垂直,考查面面角,考查向量知识的运用,考查三棱锥的体积,考查基本不等式的运用,属于中档题.

20.(本题满分14分)本题有2个小题,第1小题满分10分,第2小题满分4分.

对任意一个非零复数,定义集合.

(Ⅰ)设是方程的一个根.试用列举法表示集合,若在中任取两个数,求其和为零的概率;

(Ⅱ)设复数,求证:

(Ⅰ)∵是方程的根,

∴或.......(2分)

当时,∵,

∴.

因此,不论取哪一个值,集合是不变的,即.......(8分)

于是,.......(10分)

(Ⅱ)证明:

∵,∴存在,使得.......(12分)

于是对任意,

由于是正奇数,,所以.......(14分)

【点评】本题主要考查两个复数代数形式的混合运算,等可能事件的概率求法,体现了分类讨论的数学思想,属于中档题.

21.(本题满分16分)本题有3个小题,第1小题满分2分,第2小题满分6分,第3小题满分8分.

用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:

用1个单位量的水可洗掉蔬菜上残留农药量的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数.

(Ⅰ)试规定的值,并解释其实际意义;

(Ⅱ)试根据假定写出函数应该满足的条件和具有的性质;

(Ⅲ)设.现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较省?

说明理由.

(Ⅰ),表示没有用水洗时,蔬菜上的农药量将保持原样.......(2分)

(Ⅱ)函数应该满足的条件和具有的性质是:

在上单调递减,且.......(8分)

(Ⅲ)设仅清洗一次,残留在农药量为,

清洗两次后,残留的农药量为,......(12分)

于是,当时,;

当时,;

因此,当时,清洗两次后残留在农药量较少;

当时,两种清洗方法具有相同的效果;

当时,一次清洗残留的农药量较少.......(16分)

【点评】本小题主要考查函数模型的选择与应用、不等式的解示及比较法比较大小等,属于基础题.考查根据实际问题建立数学模型,以及运用函数的知识解决实际问题的能力.

22.(本题满分18分)本题有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.

对任意函数,可按图示构造一个数列发生器,其工作原理如下:

①输入数据,经数列发生器输出;

②若,则数列发生器结束工作;

若,则将反馈回输入端,再输出,并依此规律继续下去,现定义.

(Ⅰ)若输入,则由数列发生器产生数列.请写出数列的所有项;

(Ⅱ)若要数列发生器产生一个无穷的常数数列,试求输入的初始数据的值;

(Ⅲ)若输入时,产生的无穷数列满足;

对任意正整数,均有,求的取值范围.

(Ⅰ)∵的定义域,

∴数列只有三项:

.......(3分)

(Ⅱ)∵,即,∴,或.

即当或2时,.

故当时,;

当时,.......(9分)

(Ⅲ)解不等式,得或.

要使,则或.......(12分)

对于函数,

若,则.......(15分)

当时,,且,

依此类推,可得数列的所有项均满足.

综上所述,.

由,得.......(18分)

【点评】

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 教育学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1