氧化锌压敏电阻的老化机理文档格式.docx

上传人:b****3 文档编号:13907093 上传时间:2022-10-14 格式:DOCX 页数:10 大小:24.86KB
下载 相关 举报
氧化锌压敏电阻的老化机理文档格式.docx_第1页
第1页 / 共10页
氧化锌压敏电阻的老化机理文档格式.docx_第2页
第2页 / 共10页
氧化锌压敏电阻的老化机理文档格式.docx_第3页
第3页 / 共10页
氧化锌压敏电阻的老化机理文档格式.docx_第4页
第4页 / 共10页
氧化锌压敏电阻的老化机理文档格式.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

氧化锌压敏电阻的老化机理文档格式.docx

《氧化锌压敏电阻的老化机理文档格式.docx》由会员分享,可在线阅读,更多相关《氧化锌压敏电阻的老化机理文档格式.docx(10页珍藏版)》请在冰豆网上搜索。

氧化锌压敏电阻的老化机理文档格式.docx

不对称变化表现在:

和老化试验电压极性相反的伏安特性(图1(a)左下角)的变化比极性一致的正方向特性(图1(a)右上角)的变化要大。

随所施加电压和加压时间的增加,U-I特性曲线的改变程度也加大。

2.1.2交流电压作用下的老化当施加交流电压一定时间后,氧化锌压敏电阻的U-I特性曲线发生对称变化,如图

(1)b所示。

除了特性曲线的变化是对称的特点外,改变的趋势与施加直流电压的趋势相近。

试验时所施加的交流电压梯度为65V/mm,温度为70℃。

试验还表明,不论是直流还是交流作用电压,老化试验后压敏电阻U-I特性在预击穿区(即低电场区域)的变化程度要比击穿区即(中电场区域)大得多。

2.2功率损耗和阻性电流的增加在直流电压作用下对氧化锌压敏电阻进行加速老化试验,试验结果表明,与交流电压作用下压敏电阻一样,氧化锌压敏电阻的功率损耗和阻性电流在老化试验过程中明显增加[1,4,

5]。

2.2.1功率损耗增加对压敏电阻试品在加速老化后,在室温下测量其功率损耗与电压的关系曲线。

图2表示试品在老化试验前后测试的结果。

加速老化试验时的温度为135℃,施加直流的荷电率为

0.85,试验时间为100h。

和老化试验前的功耗特性曲线相比,试验后的功耗有明显增加,即试验后功率损耗与电压的关系曲线发生了向左的移动。

2.2.2阻性电流增加老化试验后阻性电流增加,以及压敏电阻整体电阻率逐渐下降。

图3表示不同老化试验过程中交流电压和直流电压作用下,压敏电阻的电流增加的典型曲线。

图4表示进行老化试验前后氧化锌压敏电阻在低电场区的电阻率随温度变化的情况。

从图中可以看出,老化试验后氧化锌压敏电阻的电阻率明显减小。

2.3氧化锌压敏电阻电介质特性的变化

2.3.1介电常数的变化介电常数的变化将导致压敏电阻电容值的变化[1,4,5]。

图5所示为氧化锌压敏电阻在95V/mm的直流电压及有效值为65Vrms/mm交流电压时,进行加速老化试验前后压敏电阻电容随频率的变化曲线,试验时温度为70℃,加压时间为500h。

从图中可以看出,老化试验后,电容随频率的变化曲线发生了移动,电容值比加压老化试验前有所减小。

图6所示为氧化锌压敏电阻经95V/mm的直流电压,温度70℃,110h老化试验后,压敏电阻电容值随施加电压的变化曲线。

从图中看出,电容随电压的增加而减小,而且老化试验后曲线向下移动,即电容值有较大下降。

2.3.2介质损耗变化

图7所示为与图5相同的老化试验条件下,在进行直流和交流老化试验前后测量得到的压敏电阻介质损耗因数tanδ随频率的变化曲线[1,4,5]。

在对氧化锌压敏电阻进行交流或直流老化试验后,介质损耗在频率0.1MHz以下时都比试验前有所增加。

试验表明,随着老化试验时间、试验时的温度及施加电压幅值的增加,氧化锌压敏电阻电容的减小和介质损耗的增加都将进一步加剧。

3氧化锌压敏电阻的老化原因

3.1热激发电流

测量热激发电流(TSC)是常用于研究连续电压作用下电介质老化机理的一种方法。

在连续电压作用下,介质内部积累了电荷,试验时,当温度升高,这些电荷因受热而释放出来,便形成热激发电流[1,4]。

3.1.1热激发电流的测定当对经施加直流电压老化后的压敏电阻,用石英管通过以0.333K/s一定的速率加温时(不加偏压),可以观察到并测定出热激发电流TSC,热激发电流是在非平衡状态下的迁移离子向平衡状态的过渡中产生的。

通过一定速率的加热,界面附近积累的离子通过扩散又恢复到起始分布状态,而这种扩散是定向的,因而产生热激发电流,所以当压敏电阻经热激发电流测试后,其U-I特性曲线会恢复到原来的状态,因此,热激发电流的大小也就正好是老化程度的量度。

压敏电阻经过不同直流负荷时间的直流老化,测得的热激发电流如图8所示。

由图8可见,热激发电流TSC峰值随着老化时间的增长而增大,并且相应的峰值温度Tm向高温方向移动。

3.1.2热激发释放电荷与老化时间的关系热激发释放的电荷QTSC与老化时间t的关系用下式表示

QTSC=Ktn

(1)式中:

K—常数;

n—指数,约为0.6。

从上式可知,QTSC随时间的变化是缓慢和连续的。

考虑到老化可以在长达几百小时内连续发生,要陷阱中的电子显出长达几百小时的响应时间是不可能的,只有离子迁移可以说明上述现象,这里的离子迁移发生在耗尽层区和ZnO-ZnO晶粒之间的晶界层区。

在95V/mm、343K、1h偏压后测定了经800℃热处理2h试验的热激发电流TSC。

图8实验结果用破折线表示。

热处理后试样的TSC约为未处理试样TSC的1/5。

说明热处理后的试样比未热处理的U-I曲线变化显著地小,表现出良好的耐受偏压稳定性。

3.2离子扩散在氧化锌压敏电阻耗尽层中,可能迁移的离子有填隙锌离子()、格点上的锌离子()格点上的氧离子()和其他在锌格点上的替位(外来)离子(如Bi·

·

、Co·

和Mn·

等)。

Gupta等通过对交流电压作用下填隙锌扩散过程的研究,提出了填隙锌是占优势的迁移离子的证据[1,2,4]。

根据承受交流电压作用的压敏电阻,其电流衰减方程和反向偏压一边的耗尽层中占优势的离子,在电场作用下向晶界方向迁移的离子扩散方程,可以求出离子扩散系数

(2)式中:

D—离子扩散系数;

L—耗尽层宽度;

τ—电流衰减时间常数。

从测得的电流衰减曲线,可以求出时间常数τ。

若耗尽层宽度L=100nm,温度在100℃~170℃范围内,则按式

(2)计算的扩散系数D=10-12~10-13(cm2/s)。

表1列出了文献报导的离子扩散系数。

从表中的数据可以看出,按式

(2)计算的结果与文献中报导的填隙锌离子的扩散系数十分接近。

表1文献报导的离子扩散系数与用式

(2)计算的离子扩散系数的比较

扩散离子扩散系数(cm2/s)格点上的锌离子DZn(L)10-42格点上的氧离子Do(L)10-84填隙锌离子DZn(i)10-10~10-12按式

(2)计算Di10-12~10-13

因此,可以认为填隙锌是氧化锌压敏电阻老化过程中起决定性作用的迁移离子。

3.3填隙锌离子的来源氧化锌的非化学计量特性,当加热时,特别是在氧气氛下,它可形成过剩的Zn施主,寄存在点阵的间隙位上,当冷却时在室温下“冻结”。

填隙锌离子从锌颗粒内逐渐迁移到其边界,在耗尽层中被捕获的冻结填隙离子对压敏电阻的稳定性是有害的,会引起压敏电阻老化

[2,7]。

基于这一概念,研究了压敏电阻的晶界缺陷模型(图10),与肖特基势垒能级

模型相似。

压敏电阻的不稳定性是由于电场促使填隙锌在耗尽层中的扩散,继而通过与晶粒边界缺陷产生化学反应的过程,结果导致随着时间延长势垒高度降低,泄漏电流增加。

由两种势垒成分构成一耗尽层:

(1)空间固定的正电荷离子构成的稳定成分。

(2)由移动的正电荷的填隙锌离子构成的亚稳定成分。

热处理使填隙锌还原,提高了稳定性。

当耗尽层中的填隙锌通过加热退火处理永久性地扩散出来,表明压敏电阻的稳定性得以改善。

3.4肖特基势垒的变化

压敏电阻经直流负荷后U-I特性曲线的老化归因于肖特基势垒的变化。

老化主要发生在预

[2,4]是

由上式可知,这种电流增大归因于φB的减φB的减小。

击穿区,预击穿区的热激发方程(热发射电流)

(3)

式中:

J—热发射电流;

φB—电子热激活能;

E—电场强度;

B—常数;

Jo—常数;

K—波尔兹常数;

T—绝对温度。

U-I特性曲线老化后一定电压下的电流增大。

小,所以上面所说肖特基势垒的变化就是指位于晶粒边界的肖特基势垒φB:

(4)

e—电子电荷;

Ns—表面态密度;

εo—真空介电常数;

Nd—ZnO晶粒中的施主浓度。

由上式看出,Ns的减小或Nd的增加都可使φB下降,即晶界层或晶粒边界中负电荷

(Ns)的减少、或者是耗尽层中正电荷(Nd)的增加都会导致φB的下降,使J相对地增大,从而造成U-I特性曲线的老化。

使Ns减少或使Nd增加的原因在于正、负离子在晶界层与晶粒的界面两侧的积累和离散。

由式(3)可知,泄漏电流是与势垒高度、外施电压及温度有关的。

当外施电压和温度一定时,泄漏电流增加意味着势垒高度的降低。

图9所示根据老化前后,不同温度下的电压一电流特性求得的老化前后势垒高度随外施电压的变化。

从这些数据可以看出,老化后势垒高度确实降低,并且势垒高度降低的程度随着外施电压的增加而增加。

因此,可以认为老化后,压敏电阻片泄漏电流的增加完全是由于肖特基础势垒

高度降低造成的。

下面用图10具体地说明由离子迁移而引起起的这种离子的积累和离散现象。

表2列出在直流负荷电压作用下,肖特基势垒的变化情况。

肖特基势垒高度的减小是由于Ns的减小或在界面的负电荷引起;

或者由于施主浓度的增加或者耗尽层中的正电荷Nd的增加而引起的。

3.5晶界缺陷模型氧化锌压敏电阻的晶界缺陷模型(图11)[1,2,6],由两种势垒成分构成一耗尽层:

a.空间位置固定的、正电荷离子形成的稳定成分。

这种离子是3价的置换(外来)离子,称为施主离子,(D是Bi、Sb等)和本征氧空位及。

b.可移动的、正电荷的Zn填隙离子组成的亚稳定成分。

这一种离子是单电荷和双电荷本征Zn填隙离子、。

这些正电荷施主从晶粒边界的两侧扩散到邻近晶粒,由晶粒边界处负电荷受主层来补偿,它们基本上是本征Zn空位和。

认为氧填隙和在ZnO中不是主要的缺陷类型。

(1)为了满足电中性,晶界上的负电荷(、)是由相邻晶粒的耗尽层中的正电荷在两边平衡的。

在耗尽层中电荷的重要特点是这些正离子的空间位置是不同的:

置换离子()和空位(,)

是位于点阵(子晶格)位置上,而Zn填隙离子(,)是位于ZnO(纤锌矿)结构的间隙位上。

其结果,Zn填隙离子(,)可以迅速地在结构中经由这种间隙位置上迁移,而基质点阵离子

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 教育学心理学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1