ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:24.86KB ,
资源ID:13907093      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/13907093.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(氧化锌压敏电阻的老化机理文档格式.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

氧化锌压敏电阻的老化机理文档格式.docx

1、 不对称变化表现在:和老化试验电 压极性相反的伏安特性(图 1(a) 左下角)的变化比极性一致的正方向特性(图 1(a) 右 上角)的变化要大。随所施加电压和加压时间的增加, U-I 特性曲线的改变程度也加大。2.1.2交流电压作用下的老化 当施加交流电压一定时间后,氧化锌压敏电阻的 U-I 特性曲线发生对称变化,如图 (1)b 所示。 除了特性曲线的变化是对称的特点外, 改变的趋势与施加直流电压的趋势相近。 试验 时所施加的交流电压梯度为 65V/mm ,温度为 70 。试验还表明, 不论是直流还是交流作用电压, 老化试验后压敏电阻 U-I 特性在预击穿区 (即 低电场区域)的变化程度要比击

2、穿区即(中电场区域)大得多。2.2功率损耗和阻性电流的增加 在直流电压作用下对氧化锌压敏电阻进行加速老化试验, 试验结果表明, 与交流电压作用下 压敏电阻一样,氧化锌压敏电阻的功率损耗和阻性电流在老化试验过程中明显增加 1 , 4 ,5 。2.2.1功率损耗增加 对压敏电阻试品在加速老化后,在室温下测量其功率损耗与电压的关系曲线。图 2 表示试 品在老化试验前后测试的结果。加速老化试验时的温度为 135 ,施加直流的荷电率为0.85 ,试验时间为 100h 。和老化试验前的功耗特性曲线相比,试验后的功耗有明显增加, 即试验后功率损耗与电压的关系曲线发生了向左的移动。2.2.2阻性电流增加 老化

3、试验后阻性电流增加,以及压敏电阻整体电阻率逐渐下降。图 3 表示不同老化试验过程中交流电压和直流电压作用下,压敏电阻的电流增加的典型曲 线。图 4 表示进行老化试验前后氧化锌压敏电阻在低电场区的电阻率随温度变化的情况。从图 中可以看出,老化试验后氧化锌压敏电阻的电阻率明显减小。2.3 氧化锌压敏电阻电介质特性的变化2.3.1介电常数的变化 介电常数的变化将导致压敏电阻电容值的变化 1 , 4 , 5 。图 5 所示为氧化锌压敏电阻在 95V/mm 的直流电压及有效值为 65Vrms/mm 交流电 压时,进行加速老化试验前后压敏电阻电容随频率的变化曲线,试验时温度为 70 ,加压 时间为 500

4、h 。从图中可以看出, 老化试验后, 电容随频率的变化曲线发生了移动, 电容值 比加压老化试验前有所减小。图 6 所示为氧化锌压敏电阻经 95V/mm 的直流电压,温度 70 , 110h 老化试验后, 压敏电阻电容值随施加电压的变化曲线。 从图中看出, 电容随电压的增加而减小, 而且老化 试验后曲线向下移动,即电容值有较大下降。2.3.2介质损耗变化图 7 所示为与图 5 相同的老化试验条件下,在进行直流和交流老化试验前后测量得到的 压敏电阻介质损耗因数 tan 随频率的变化曲线 1 , 4, 5 。在对氧化锌压敏电阻进行 交流或直流老化试验后,介质损耗在频率 0.1MHz 以下时都比试验前

5、有所增加。 试验表明, 随着老化试验时间、 试验时的温度及施加电压幅值的增加, 氧化锌压敏电阻电容 的减小和介质损耗的增加都将进一步加剧。3氧化锌压敏电阻的老化原因3.1热激发电流测量热激发电流 (TSC) 是常用于研究连续电压作用下电介质老化机理的一种方法。 在连续电 压作用下,介质内部积累了电荷,试验时,当温度升高,这些电荷因受热而释放出来,便形 成热激发电流 1 , 4 。3.1.1热激发电流的测定 当对经施加直流电压老化后的压敏电阻,用石英管通过以 0.333K/s 一定的速率加温时 (不加偏压),可以观察到并测定出热激发电流 TSC ,热激发电流是在非平衡状态下的迁 移离子向平衡状态

6、的过渡中产生的。 通过一定速率的加热, 界面附近积累的离子通过扩散又 恢复到起始分布状态, 而这种扩散是定向的, 因而产生热激发电流, 所以当压敏电阻经热激 发电流测试后,其 U-I 特性曲线会恢复到原来的状态,因此,热激发电流的大小也就正好 是老化程度的量度。压敏电阻经过不同直流负荷时间的直流老化,测得的热激发电流如图 8 所示。 由图 8 可见,热激发电流 TSC 峰值随着老化时间的增长而增大,并且相应的峰值温度 Tm 向高温方向移动。3.1.2热激发释放电荷与老化时间的关系 热激发释放的电荷 QTSC 与老化时间 t 的关系用下式表示QTSC=Ktn (1) 式中: K 常数;n 指数,

7、约为 0.6。从上式可知, QTSC 随时间的变化是缓慢和连续的。考虑到老化可以在长达几百小时内连 续发生, 要陷阱中的电子显出长达几百小时的响应时间是不可能的, 只有离子迁移可以说明 上述现象,这里的离子迁移发生在耗尽层区和 ZnO-ZnO 晶粒之间的晶界层区。在 95V/mm 、343K 、1h 偏压后测定了经 800 热处理 2h 试验的热激发电流 TSC 。 图 8 实验结果用破折线表示。 热处理后试样的 TSC 约为未处理试样 TSC 的 1/5 。说明 热处理后的试样比未热处理的 U-I 曲线变化显著地小,表现出良好的耐受偏压稳定性。3.2离子扩散 在氧化锌压敏电阻耗尽层中,可能迁

8、移的离子有填隙锌离子 () 、格点上的锌离子 () 格点 上的氧离子 () 和其他在锌格点上的替位 (外来)离子(如 Bi 、Co 和 Mn 等)。 Gupta 等通过对交流电压作用下填隙锌扩散过程的研究,提出了填隙锌是占优势的迁移离 子的证据 1 , 2 , 4 。根据承受交流电压作用的压敏电阻, 其电流衰减方程和反向偏压一边的耗尽层中占优势的离 子,在电场作用下向晶界方向迁移的离子扩散方程,可以求出离子扩散系数(2) 式中: D 离子扩散系数;L 耗尽层宽度; 电流衰减时间常数。从测得的电流衰减曲线,可以求出时间常数 。若耗尽层宽度 L=100nm ,温度在 100 170 范围内,则按式

9、 (2) 计算的扩散系数 D=10-12 10-13 (cm2/s) 。表 1 列出了文献报导的离子扩散系数。从表中的数据可以看出,按式 (2) 计算的结果与 文献中报导的填隙锌离子的扩散系数十分接近。表 1 文献报导的离子扩散系数与用式 (2) 计算的 离子扩散系数的比较扩散离子 扩散系数( cm2/s ) 格点上的锌离子 DZn(L) 10-42 格点上的氧离子 Do(L) 10-84 填隙锌离子 DZn(i) 10-10 10-12 按式 (2) 计算 Di 10-12 10-13因此,可以认为填隙锌是氧化锌压敏电阻老化过程中起决定性作用的迁移离子。3.3填隙锌离子的来源 氧化锌的非化学

10、计量特性,当加热时,特别是在氧气氛下,它可形成过剩的 Zn 施主,寄 存在点阵的间隙位上,当冷却时在室温下 “冻结”。 填隙锌离子从锌颗粒内逐渐迁移到其边 界,在耗尽层中被捕获的冻结填隙离子对压敏电阻的稳定性是有害的, 会引起压敏电阻老化2 , 7 。基于这一概念,研究了压敏电阻的晶界缺陷模型(图 10 ),与肖特基势垒能级模型相似。压敏电阻的不稳定性是由于电场促使填隙锌在耗尽层中的扩散, 继而通过与晶粒边界缺陷产 生化学反应的过程,结果导致随着时间延长势垒高度降低,泄漏电流增加。由两种势垒成分构成一耗尽层:(1)空间固定的正电荷离子构成的稳定成分。(2)由移动的正电荷的填隙锌离子构成的亚稳定

11、成分。 热处理使填隙锌还原, 提高了稳定性。 当耗尽层中的填隙锌通过加热退火处理永久性地扩散出来,表明压敏电阻的稳定性得以改 善。3.4肖特基势垒的变化压敏电阻经直流负荷后 U-I 特性曲线的老化归因于肖特基势垒的变化。老化主要发生在预2 , 4 是由上式可知, 这种电流增大归因于 B 的减 B 的减小。击穿区,预击穿区的热激发方程(热发射电流)(3)式中: J 热发射电流; B 电子热激活能;E 电场强度;B 常数;Jo 常数;K 波尔兹常数;T 绝对温度。U-I 特性曲线老化后一定电压下的电流增大。 小,所以上面所说肖特基势垒的变化就是指 位于晶粒边界的肖特基势垒 B:(4) e 电子电荷

12、;Ns 表面态密度; o 真空介电常数;Nd ZnO 晶粒中的施主浓度。由上式看出, Ns 的减小或 Nd 的增加都可使 B 下降,即晶界层或晶粒边界中负电荷(Ns) 的减少、或者是耗尽层中正电荷 (Nd) 的增加都会导致 B 的下降,使 J 相对地 增大,从而造成 U-I 特性曲线的老化。使 Ns 减少或使 Nd 增加的原因在于正、负离子 在晶界层与晶粒的界面两侧的积累和离散。由式 (3) 可知,泄漏电流是与势垒高度、外施电压及温度有关的。当外施电压和温度一定 时,泄漏电流增加意味着势垒高度的降低。图 9 所示根据老化前后,不同温度下的电压一 电流特性求得的老化前后势垒高度随外施电压的变化。

13、从这些数据可以看出, 老化后势垒高度确实降低, 并且势垒高度降低的程度随着外施电压的 增加而增加。 因此, 可以认为老化后, 压敏电阻片泄漏电流的增加完全是由于肖特基础势垒高度降低造成的。下面用图 10 具体地说明由离子迁移而引起起的这种离子的积累和离散现象。表 2 列出在直流负荷电压作用下,肖特基势垒的变化情况。肖特基势垒高度的减小是由于 Ns 的减小或在界面的负电荷引起;或者由于施主浓度的增 加或者耗尽层中的正电荷 Nd 的增加而引起的。3.5晶界缺陷模型 氧化锌压敏电阻的晶界缺陷模型(图 11)1 , 2, 6 ,由两种势垒成分构成一耗尽层: a. 空间位置固定的、正电荷离子形成的稳定成

14、分。这种离子是 3 价的置换(外来)离子, 称为施主离子,( D 是 Bi 、 Sb 等)和本征氧空位及。b. 可移动的、 正电荷的 Zn 填隙离子组成的亚稳定成分。 这一种离子是单电荷和双电荷本 征 Zn 填隙离子、。这些正电荷施主从晶粒边界的两侧扩散到邻近晶粒, 由晶粒边界处负电荷受主层来补偿, 它 们基本上是本征 Zn 空位 和 。认为氧填隙 和 在 ZnO 中不是主要的缺陷类型。(1) 为了满足电中性, 晶界上的负电荷 (、 )是由相邻晶粒的耗尽层中的正电荷在两边平衡 的。在耗尽层中电荷的重要特点是这些正离子的空间位置是不同的: 置换离子 ()和空位(,)是位于点阵(子晶格)位置上,而 Zn 填隙离子(,)是位于 ZnO (纤锌矿)结构的间隙 位上。其结果, Zn 填隙离子(,)可以迅速地在结构中经由这种间隙位置上迁移,而基质 点阵离子

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1