奥数专项训练应用题平均数的问题Word文档下载推荐.docx

上传人:b****0 文档编号:13875214 上传时间:2022-10-14 格式:DOCX 页数:8 大小:20.21KB
下载 相关 举报
奥数专项训练应用题平均数的问题Word文档下载推荐.docx_第1页
第1页 / 共8页
奥数专项训练应用题平均数的问题Word文档下载推荐.docx_第2页
第2页 / 共8页
奥数专项训练应用题平均数的问题Word文档下载推荐.docx_第3页
第3页 / 共8页
奥数专项训练应用题平均数的问题Word文档下载推荐.docx_第4页
第4页 / 共8页
奥数专项训练应用题平均数的问题Word文档下载推荐.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

奥数专项训练应用题平均数的问题Word文档下载推荐.docx

《奥数专项训练应用题平均数的问题Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《奥数专项训练应用题平均数的问题Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。

奥数专项训练应用题平均数的问题Word文档下载推荐.docx

23,B:

26,C:

30,D:

33,4个数的平均数是多少?

参考答案与试题解析

一、填空题

1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是24.

考点:

平均数的含义及求平均数的方法.

分析:

根据“9个数的平均数是72”,可以求出这9个数的和是多少;

再根据“去掉一个数后,余下的数平均数为78”,又可求出余下的8个数的和是多少;

进一步求出去掉的数是多少.

解答:

解:

9个数的和:

72&

times;

9=648,

余下的8个数的和:

78&

8=624,

去掉的数是:

648﹣624=24.

答;

去掉的数是24.

故答案为;

24.

点评:

解决此题关键是根据平均数先求出9个数与8个数的和,再进一步求出去掉的数.

2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是89.5分.

先根据“平均分&

人数=总成绩”分别计算出两名补考的学生总成绩和(40﹣2)名同学的总成绩,然后相加求出全班同学的总成绩,用“总成绩&

divide;

全班总人数=平均成绩”即可;

[89&

(40﹣2)+99&

2]&

40,

=3580&

=89.5(分);

答:

这个班级中考平均分是89.5分;

故答案为:

89.5.

解答此题的关键是先求出全班同学的总成绩,用“总成绩&

3.有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,则第三个数是135.

先根据平均数的含义列式127&

3求出从小端开始前3个数的和,列式148&

3求出从大端开始的3个数的和,相加可知为5个数的和+第三个数,再减去5个数的和即可求解.

127&

3+148&

3﹣138&

5

=381+444﹣690

=135.

135.

考查了平均数的含义,本题共5个数,从小端开始前3个数的和+从大端开始的3个数的和=5个数的和+第三个数.

4.某5个数的平均值为60,若把其中一个数改为80,平均值为70,这个数是30.

由平均数是60,可以得出这5个数的总和是60&

5=300,若平均数是70,那么总和就是70&

5=350,从这里可以看出这个数比原来多了50,80﹣50=30.所以这个数原来是30.

80﹣(70&

5﹣60&

5),

=80﹣(350﹣300),

=80﹣50,

=30;

这个数是30.

30.

此题考查了平均数的灵活应用.

5.如果三个人的平均年龄为22岁.年龄最小的没有小于18岁.那么最大年龄可能是28岁.

先求三个人的年龄和,再假设有两个年龄小的,则可以求出最大年龄的可能值.

三人年龄和:

22&

3=66(岁),

设有两个人的年龄最小,

和为19&

2=38,

所以,最大年龄可能是:

66﹣38=28(岁).

最大年龄可能是28岁.

28.

此题主要考查平均数的含义.

6.数学考试的满分是100分,六位同学的平均分是91分,这6个同学的分数各不相同,其中一个同学得65分,那么居第三名的同学至少得95分.

先得到第一、二名最多可得100+99=199(分),根据求平均数的方法可得第三、四、五名的平均分为:

(91&

6﹣100﹣99﹣65)&

3=94(分),由于这6个同学的分数各不相同,可得第三名最少95(分).

100+99=199(分),

(91&

3

=282&

=94(分).

故第三名最少95(分).

95.

考查了平均数的含义及求平均数的方法,本题得到除了前面两名同学和得65分外的三名同学的平均分是解题的难点,是竞赛题型,有一定的难度.

7.在一次登山比赛中,小刚上山时每分钟走40米,18分钟达到山顶,然后按原路下山,每分钟走60米,小刚往返的平均速度是每分48米.

要求小刚往返的平均速度是每分多少米,先根据“速度&

时间=路程”,计算出从山下到山顶的路程;

然后根据“时间=路程&

速度”求出下山的时间;

因为根据上、下山的路程相等,继而用“往返总路程&

往返总时间=平均速度”,代入数值解答即可.

(40&

18&

2)&

[18+40&

60],

=1440&

30,

=48(米);

小刚往返的平均速度是每分48米.

48.

此题解答的关键是抓住往返路程不变这一条件,根据路程、时间和速度三者之间的关系以及平均数的求法进行解答即可.

8.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多40人.

要求男同学比女同学多多少人,先要分别求出男生和女生的人数;

用男生人数减去女生人数即可;

根据“平均分&

人数=总成绩”,先求出全班总成绩为63&

100=6300分;

假设100人都是男同学,则总分为60&

100=6000分;

这样就比总成绩少了

6300﹣6000=300分,因为一名男生比一名女生少考了70﹣60=10分,则女生人数为300&

10=30人;

进而得出男生人数为100﹣30=70人,继而根据题意求出结论.

女生:

(63&

100﹣60&

100)&

(70﹣60),

=300&

10,

=30(人),

男生:

100﹣30=70(人),

70﹣30=40(人);

男同学比女同学多40人.

40.

解答此题的关键是认真分析,根据平均数、人数和总成绩之间的关系,进行分析解答即可.

9.一些同学分一些书,若平均每人分若干本,还余14本,若每人分9本,则最后一人分得6本,那么共有学生17人.

逻辑推理;

盈亏问题.

因为每人分9本,则最后一人分得6本,所以最后一人少9﹣6=3(本);

因为原来最后还剩14本的,可是现在少了3本,所以又分出去了14+3=17(本);

因为只有1&

17=17;

所以有17个学生,每人又多分了1本.

(14+3)&

1=17(人);

那么共有学生17人;

17.

此题属于较复杂的逻辑推理题,解答此题时应结合题意,分析要全面,进而通过推理,得出结论.

10.有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就达到90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有6人.

找出对应量,利用盈亏分数的和除以平均分之差,即为参加考试的人数.

(13+5)&

(90﹣87)=6(人).

6.

此题属典型的盈亏问题,关键是明白盈亏分数的和除以平均分之差,即为参加考试的人数.

86,92,100,106那么原4个数的平均数是48.

设这四个数为A,B,C,D,根据“平均数&

个数=总数”,则:

(A+B+C)&

3+D=86,(A+C+D)&

3+B=92,(A+B+D)&

3+C=100,(B+C+D)&

3+A=106,将这四个式子的左边和右边分别相加得:

2A+2B+2C+2D=384;

则A+B+C+D=192,(A+B+C+D)&

4=48;

根据分析得:

(86+92+100+106)&

2&

4,

=384&

=48;

解答此题的关键是根据平均数的计算方法列出式子,然后通过分析,得出:

后来得到的四个数的和是原来四个数和的2倍,进而进行解答即可.

12.甲、乙、丙三人一起买了8个面包平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没付钱.等吃完结算,丙应付4角钱,那么甲应收回钱35分.

整数、小数复合应用题.

要求甲应收回钱多少分,先求出每人分得几个面包

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 院校资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1