完整版地球物理学中的反演问题Word下载.docx

上传人:b****3 文档编号:13867342 上传时间:2022-10-14 格式:DOCX 页数:21 大小:723.03KB
下载 相关 举报
完整版地球物理学中的反演问题Word下载.docx_第1页
第1页 / 共21页
完整版地球物理学中的反演问题Word下载.docx_第2页
第2页 / 共21页
完整版地球物理学中的反演问题Word下载.docx_第3页
第3页 / 共21页
完整版地球物理学中的反演问题Word下载.docx_第4页
第4页 / 共21页
完整版地球物理学中的反演问题Word下载.docx_第5页
第5页 / 共21页
点击查看更多>>
下载资源
资源描述

完整版地球物理学中的反演问题Word下载.docx

《完整版地球物理学中的反演问题Word下载.docx》由会员分享,可在线阅读,更多相关《完整版地球物理学中的反演问题Word下载.docx(21页珍藏版)》请在冰豆网上搜索。

完整版地球物理学中的反演问题Word下载.docx

(量子力学相关概念不熟悉,翻译起来有点坑~~)

图-1

尽管精确非线性反演法在数学表达上是美妙的,但它们的适用性是有限的。

原因有很多。

第一,精确的反演法通常只在理想状态下适用,这在实际中可能无法保持。

比如,Herglotz-Wiechert反演假定了地下的波速只依赖于深度并且随着深度单调增加。

地震层析成像显示这两点要求在地幔层都不满足[Noletetal.,1994]。

第二,精确反演方法常常很不稳定。

Dorrenetal[1994]已经清楚地展示了Marchenko方程解中这种不稳定性的存在。

然而,第三个原因是最根本的。

在很多反演问题中,我们要确定的模型是空间变量的一个连续函数。

这意味着该模型有无穷多的自由度。

然而,在实际实验中,能够用来确定模型的数据数量通常都是有限的。

通过变量的简单计算表明这些数据不能承担足够的信息来唯一确定模型。

在线性反演问题的背景下,Backus和Gilbert[1967,1968]提出了这一观点,之后Parker[1994]也提出来这点。

这个问题对于非线性反演问题同样相关。

在实际实验中有限多的数据可以用来重建具有无穷多自由度的模型这样的事实必然表明反演问题不是唯一的,在这个意义上讲,有很多模型同样可以很好地解释这些数据。

因此,从数据反演中得到的模型不一定等于我们想要的真实模型。

这意味着图1中展示的反演问题的观点太简单了。

对于现实问题,反演实际上包含两步。

用表示真实模型,表示数据。

由数据我们得到一个估计的模型,这一步称为估计问题(estimationproblem),看图2。

除了估计一个和数据一致的模型,我们也需要探究估计模型和真实模型具有什么关系。

在评价问题中,我们会确定估计模型获得了真实模型的哪些性质以及附带了哪些误差。

这部分讨论的实质就是反演=估计+评价。

当我们作出一个物理解释却不承认模型中存在误差的事实以及有限的精度,这是没有多少意义的[Trampert,1998]。

图-2

通常来说,有两个原因可以解释为什么估计模型跟真实模型不同。

第一个原因是反演问题的非唯一性,这使得一些(通常是无穷多的)模型满足这些数据。

从技术上来讲,这个模型因为模型空间的不充分取样所以零空间存在。

第二个原因是实际数据(以及物理理论比我们想要的更频繁)总是受到误差的污染,所以估计模型也受到这些误差的污染。

所以模型评价有两个方面,非唯一性和误差传播。

模型估计和模型评价对于具有有限自由度的离散模型和具有无穷多自由度的连续模型在根本上是不同的。

而且,模型评价的问题只有在线性反演问题上得到很好的解决。

因此,离散模型和连续模型的反演是分开处理的。

线性反演和非线性反演的情况也是分开处理的。

在第2节将讨论有限数量模型参数的线性反演。

在第3节中将推广为处理带有无穷多自由度的连续模型的线性反演问题。

实际上,很多反演问题都不完全是线性的,但是这些问题常常可以通过做一些适当的近似来线性化。

在第4节中将推导出单次散射近似。

这种方法形成了运用于反射地震学中的成像工具的基础。

Rayleigh原理将在第5节介绍,它是关于线性化的,构成了使用正则模态频率对地球结构进行反演的基础。

地震波传播时间层析的线性化方法是基于Fermat原理的,这将在第6节介绍。

非线性反演问题要明显难于线性反演问题。

第7节将会说明非线性可能是不适定性的一个来源。

目前,对于非线性反演问题的评价问题还没有令人满意的理论。

在第8节将会介绍三种可用于非线性评价问题的方法。

然而,这些方法没有一个是非常令人满意的,表明非线性反演理论是一个有重要研究挑战的领域。

2、解有限的线性方程组

在前面的章节中讨论过,反演问题将有限的数据映射到一个模型上。

在地球物理学大多数实际应用中,该模型是空间坐标的一个连续函数,因此具有无穷多的自由度。

我们暂时忽略这点并假定该模型的特征可以由有限个参数确定。

我们将回到这些模型的重要情形,在第3节中这些模型会是无限维的。

2.1线性模型估计

对于一个有限维的模型,模型参数可以规定为向量,类似地,数据可以规定为向量。

矩阵通过乘积将数据关联到模型上。

这个矩阵常常被称为理论算子。

确实,在给定的问题上,它包含了我们选择给模型的所有物理和数学信息。

实际上,这些数据包含了误差,因此记录的数据和该模型的关系应该是:

(1)

有一点需要经常注意的是,我们对于包含在模型向量中的模型参数的选择有某种武断性。

例如,若想要描述地球的密度,我们可以选择一个模型,在该模型中,地幔和地核具有均匀密度,在这种情况下存在两个模型参数。

或者,我们可以把大量定义在球体上的特征方程中的地球密度展开,比如描述横向变化的球谐函数以及描述深度方向变化的多项式,这种情况会有更多的模型参数。

在同一个模型上的这两种不同参数化方法对应于不同的模型参数和不同的矩阵。

这个例子表明模型m不一定是真实的模型,但是对模型参数的选择通常包含了对于所能构建的模型的等级的限制。

以下我们将把认为是真模型,虽然对于它的定义存在很多困难。

由记录的数据我们得到模型的一个估计。

因为这个估计实际上跟真模型是不同的,我们用来表示估计模型。

有很多方法来设计一个逆运算将数据映射到估计模型上[e.g.Menke,1984;

Tarantola,1987;

Parker,1994]。

无论选择什么估计量,从数据到估计模型之间最一般的线性映射可以写做

(2)

算子称为矩阵的广义逆。

一般来说,数据的数量不等于模型参数的数量。

因此,通常是一个非方阵矩阵,所以它的正常逆矩阵是不存在的。

随后我们将说明广义逆矩阵如何来选择,但目前并不需要作详细说明。

被估计模型与真模型之间的关系遵循如下表达式(将等式

(1)代入等式

(2))

(3)

矩阵称为精度矩阵(resolutionkernel),这个算子被定义为

(4)

表达式(3)可以写成下列形式来进行解释

(5)

在理想情况下,估计模型等于真模型向量:

表示我们选择的参数(列在向量中)可以被相互独立估计。

等式(5)中最后两项分别解释了估计模型中的模糊度(blurring)和伪差(artifacts)。

描述了估计模型向量的元素是真模型向量不同元素的线性组合。

我们只能取得模型估计中的参数平均值和模糊度,因为我们无法映射出最完美的细节。

在理想情况下,这一项是为零的,此时等于单位矩阵。

由(4)可知,对于完美解决的模型参数,精度矩阵为单位矩阵,即

(6)

如前所述,通常定义向量的模型参数的定义存在某种歧义。

精度算子告诉了我们在估计过程中我们可以独立获得的模型参数的程度。

但是,精度矩阵并没有完全告诉我们估计模型和真实的潜在物理模型之间的关系是什么,因为它没有考虑模型参数的选择对于在估计过程中能够得到的模型的限制程度。

表达式(5)中的最后一项描述了误差是怎样映射到估计模型上去的。

这些误差并不确知,否则它们就能从数据中减去。

因为数据中存在误差,所以需要一个统计分析来描述估计模型中的这些误差。

当数据不相关且有标准差,则根据数据误差传播,模型估计中的标准差表达为

(7)

理想上来看,我们希望同时获得:

一个完美的精度,以及不存在误差的估计模型。

不幸的是,实际上这是不可能实现的。

比如,使用广义逆阵完全抑制了误差传播。

这导致(荒谬的)估计模型,这样确实不受误差的影响。

但是,这个特殊的广义逆阵对应的精度矩阵是,显然这和理想的精度矩阵相去甚远。

因此,实际上我们需要在误差传播和精度限制之间找到一个可接受的平衡点。

2.2最小二乘估计

我们现在来考虑这样的情况:

独立数据的数量多于未知数的数量。

在这种情况下,等式不总是对任意给定的模型都满足,因为数据向量中包含的可能误差使得方程左右矛盾。

例如,我们来考虑下面的问题。

我们有两个物块质量分别是和。

第一个物块的称重得出1千克质量。

某人测量第二个物块,结果得出2千克质量。

接下来,某人把两个物块放在一起称重,结果发现总质量是2千克。

这个问题中测量的结果可以用下列方程组表示

(8)

相应的矩阵表示为

(9)

显然,这个方程组是不能满足的。

不可能第一个物块质量是,第二个物块的质量是,而它们的质量之和。

显然测量中存在误差,但是没理由舍弃三个方程中的一个而去支持另外两个。

图3(略)生动地阐述了这个问题。

在平面中,三个方程对应三条实线。

三条线不相交于同一点表示这个线性方程组存在矛盾。

所以,采用合理的方法调和这些方程是确定两个物块质量的反演问题的一部分。

通常估计模型的一种方法是寻找一个能够最佳拟合数据的模型,在这个意义上,数据向量和再估算数据之间由范数(即欧几里德距离,延伸阅读泛函分析)计量的差值要尽可能小。

这表示由模型给出的最小二乘解最小化下列目标函数

图-3

(10)

详细说明了这个量由下列模型估计最小化

(11)

在图3的例子中,最小二乘解是平面中到三条实线距离最短的点,这个点用一个黑色方块来表示。

使用矩阵(9),我们很容易得出问题(8)的最小二乘估计量由下式给出

(12)

代入数据向量,分别得到估计模型

(13)

2.3最小范数估计

在一些问题中,未知量的数量少于参数的数量。

例如,考虑这样一个情形:

有两个物块和,某人只测量了它们的总质量

(14)

(15)

这个问题被形象地表示在图4(略)中。

显然,任何位于该实线上的模型向量都严格满足等式(14)。

因此,考虑到质量是正值,则存在无限多完全满足数据的解。

一个模型估计可以通过选取一个完全满足数据且具有最小范数的模型来定义,这个模型在图4中用黑色方块表示。

图-4

对于一个一般的欠定(under-determined证据不足地说明)方程组系统,最小范数解定义为完全满足数据,即,且最小化的模型。

使用拉格朗日乘数法我们能得出最小范数解

(16)

给出了详细推导。

我们很容易得出系统(14)的最小范数解

(17)

2.4混定问题(mixeddeterminedproblems)

在最小二乘估计中,我们假定即使由于测量误差导致出现矛盾,我们仍然有足够的信息来求出所有模型参数。

所以,这就变成一个完全超定(over-determined多因素决定)的问题,作为结果是正则的。

在最小范数解中,我们假定在可用的信息中不存在矛盾,但是我们没有足够的方程求出所有模型参数。

这就是一个完全欠定的问题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 调解书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1