圆章末重难点题型举一反三人教版解析版.docx
《圆章末重难点题型举一反三人教版解析版.docx》由会员分享,可在线阅读,更多相关《圆章末重难点题型举一反三人教版解析版.docx(73页珍藏版)》请在冰豆网上搜索。
圆章末重难点题型举一反三人教版解析版
专题1.4圆章末重难点题型
【人教版】
【考点1巧用圆的半径相等】
【方法点拨】解决此类问题的关键是连接半径,抓住圆的半径相等是关键.
【例1】(2020秋•朝阳区校级月考)如图,OA是⊙O的半径,B为OA上一点(且不与点O、A重合),过点B作OA的垂线交⊙O于点C.以OB、BC为边作矩形OBCD,连结BD.若BD=10,BC=8,则AB的长为( )
A.8B.6C.4D.2
【分析】如图,连接OC,在Rt△OBC中,求出OB即可解决问题.
【解答】解:
如图,连接OC.
∵四边形OBCD是矩形,
∴∠OBC=90°,BD=OC=OA=10,
∴OB6,
∴AB=OA﹣OB=4,
故选:
C.
【点评】本题考查圆,勾股定理,矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
【变式1-1】(2020•南召县模拟)如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
A.42°B.28°C.21°D.20°
【分析】利用OB=DE,OB=OD得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E∠AOC进行计算即可.
【解答】解:
连结OD,如图,
∵OB=DE,OB=OD,
∴DO=DE,
∴∠E=∠DOE,
∵∠1=∠DOE+∠E,
∴∠1=2∠E,
而OC=OD,
∴∠C=∠1,
∴∠C=2∠E,
∴∠AOC=∠C+∠E=3∠E,
∴∠E∠AOC84°=28°.
故选:
B.
【点评】本题考查了圆的认识:
掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.
【变式1-2】(2019秋•句容市校级月考)如图,点A、D、G、M在半圆O上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是( )
A.a>b>cB.a=b=cC.c>a>bD.b>c>a
【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的性质得出OA=BC=a,OD=EF=b,OM=NH=c,即可得出a=b=c.
【解答】解:
连接OA、OD、OM,如图所示:
则OA=OD=OM,
∵四边形ABOC、DEOF、HNMO均为矩形,
∴OA=BC=a,OD=EF=b,OM=NH=c,
∴a=b=c;
故选:
B.
【点评】本题考查了矩形的性质、同圆的半径相等的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.
【变式1-3】(2020秋•天宁区期中)如图,两个正方形都在⊙O的直径MN的同侧,顶点B、C、G都在MN上,正方形ABCD的顶点A和正方形CEFG的顶点F都在⊙O上,点E在CD上.若AB=5,FG=3,则OC的长为 .
【分析】由四边形ABCD,EFGC是正方形,得到∠ABC=∠FGC=90°,根据勾股定理即可得到结论.
【解答】解:
连接AO,OF,
∵四边形ABCD,EFGC是正方形,
∴∠ABC=∠FGC=90°,
∴AB2+BO2=OG2+FG2,
∴52+(5﹣OC)2=(3+OC)2+32
∴OC=2,
故答案为:
2.
【点评】本题考查了正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键.
【考点2点与圆的位置关系(求范围)】
【方法点拨】解决此类问题关键要记住若半径为r,点到圆心的距离为d,则有:
当d>r时,点在圆外;
当d=r时,点在圆上,当d<r时,点在圆内.
【例2】(2019•嘉定区二模)在Rt△ACB中,∠C=90°,AC=3,BC=3,以点A为圆心作圆A,要使B、C两点中的一点在圆A外,另一点在圆A内,那么圆A的半径长r的取值范围是 .
【分析】熟记“设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内”即可求解,
【解答】解:
∵Rt△ACB中,∠C=90°,AC=3,BC=3,
∴AB=6,
如果以点A为圆心作圆,使点C在圆A内,则r>3,
点B在圆A外,则r<6,
因而圆A半径r的取值范围为3<r<6.
故答案为3<r<6;
【点评】本题考查了对点与圆的位置关系的判断.设点到圆心的距离为d,则当d=r时,点在圆上;当d>r时,点在圆外;当d<r时,点在圆内.
【变式2-1】(2019•长宁区一模)在直角坐标平面内,点O是坐标原点,点A的坐标是(3,2),点B的坐标是(3,﹣4).如果以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,那么r的值可以取( )
A.5B.4C.3D.2
【分析】先根据两点间的距离公式分别计算出OA、OB的长,再由点A、B中有一点在圆O内,另一点在圆O外求出r的范围,进而求解即可.
【解答】解:
∵点A的坐标是(3,2),点B的坐标是(3,﹣4),
∴OA,
OB5,
∵以点O为圆心,r为半径的圆O与直线AB相交,且点A、B中有一点在圆O内,另一点在圆O外,
∴r<5,
∴r=4符合要求.
故选:
B.
【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:
当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了坐标与图形性质.
【变式2-2】(2019秋•大兴区期末)矩形ABCD中,AB=10,BC=4,点P在边AB上,且BP:
AP=4:
1,如果⊙P是以点P为圆心,PD长为半径的圆,那么下列结论正确的是( )
A.点B、C均在⊙P外B.点B在⊙P外,点C在⊙P内
C.点B在⊙P内,点C在⊙P外D.点B、C均在⊙P内
【分析】先求出AP的长,然后利用勾股定理求得圆P的半径PD的长,根据点B、C到P点的距离判断点P与圆的位置关系即可.
【解答】解:
如图,
∵四边形ABCD为矩形,
∴AD=BC=4,
∵AB=10,BP:
AP=4:
1,
∴AP=2,BP=8,
在Rt△ADP中,∵AP=2,AD=4,
∴DP6,
在Rt△PBC中,CP4,
∵8>6,46,
∴点B,点C均在⊙P外,
故选:
A.
【点评】本题考查了矩形的性质,点与圆的位置关系的判定,根据点与圆心之间的距离和圆的半径的大小关系作出判断即可.
【变式2-3】(2019秋•绿园区期末)如图,在每个小正方形的边长均为1的5×5的网格中,选取7个格点(小正方形的顶点),若以点A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个点在圆内,则r的取值范围是( )
A.3<rB.rC.rD.r≤3
【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.
【解答】解:
给各点标上字母,如图所示.
∵AB,AC=AD,AG=3,AF,
AE
所以以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,
这三个点只能为B、C、D点,
∴,
故选:
D.
【点评】本题考查了点与圆的位置关系以及勾股定理,利用勾股定理求出各格点到点A的距离是解题的关键.
【考点3点与圆的位置关系(求最值)】
【例3】(2020•长兴县三模)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点D是半径为1的⊙A上的一个动点,点E为CD的中点,连结BE,则线段BE长度的最小值为 .
【分析】取AC的中点N,连接AD、EN、BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,EN,再利用三角形的三边关系即可解决问题.
【解答】解:
如图,取AC的中点N,连接AD、EN、BN.
∵在Rt△ABC中,∠ABC=90°,AB=3,BC=4,
∴AC5,
∵AN=NC,
∴BNAC,
∵AN=NC,DE=EC,
∴ENAD,
∴BN﹣EN≤BE≤BN+EN,
∴BE,
∴2≤BE≤3,
∴BE的最小值为2,
故答案为:
2.
【点评】本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
【变式3-1】(2020•武昌区模拟)如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D是半径为4的⊙A上一动点,点M是CD的中点,则BM的最大值是 .
【分析】如图,取AC的中点N,连接MN,BN.利用直角三角形斜边中线的性质,三角形的中位线定理求出BN,MN,再利用三角形的三边关系即可解决问题.
【解答】解:
如图,取AC的中点N,连接MN,BN.
∵∠ABC=90°,AB=8,BC=6,
∴AC=10,
∵AN=NC,
∴BNAC=5,
∵AN=NC,DM=MC,
∴MN2,
∴BM≤BN+NM,
∴BM≤5+2=7,
即BM的最大值是7.
故答案为7.
【点评】本题考查直角三角形斜边的中线的性质,三角形的中位线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
【变式3-2】(2020•连云港模拟)如图,在平面直角坐标系中,C(0,4),A(3,0),⊙A半径为2,P为⊙A上任意一点,E是PC的中点,则OE的最小值是( )
A.1B.C.2D.
【分析】如图,连接AC,取AC的中点H,连接EH,OH.利用三角形的中位线定理可得EH=1,推出点E的运动轨迹是以H为圆心半径为1的圆.
【解答】解:
如图,连接AC,取AC的中点H,连接EH,OH.
∵CE=EP,CH=AH,
∴EHPA=1,
∴点E的运动轨迹是以H为圆心半径为1的圆,
∵C(0,4),A(3,0),
∴H(1.5,2),
∴OH2.5,
∴OE的最小值=OH﹣EH=2.5﹣1=1.5,
故选:
B.
【点评】本题考查点与圆的位置关系,坐标与图形的性质,三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,正确寻找点E的运动轨迹,属于中考选择题中的压轴题.
【变式3-3】(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为( )
A.1B.C.21D.2
【分析】根据同圆的半径相等可知:
点C在半径为1的⊙B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.
【解答】解:
如图,
∵点C为坐标平面内一点,BC=1,
∴C在⊙B上,且半径为1,
取OD=OA=2,连接CD,
∵AM=CM,OD=OA,
∴OM是△ACD的中位线,
∴OMCD,
当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,
∵OB=OD=2,∠BOD=90°,
∴BD=2,
∴CD=21,
∴OMCD,即OM的最大值为;
故选:
B.
【点评】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM为最大值时点C的位置是关键,也是难点.
【考点4弧、弦、角、之间的关系】
【方法点拨】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其
余各组量都分别相等,其中圆心角的度数与它所对的弧的度数相等.
【例4】(2020•建湖县校级模拟)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:
.
【分析】连接AC、OA、OB、OC、OD,根据等腰三角形的性质得到∠PAC=∠PCA,根据圆周角定理得到∠BOC=∠AOD,根据圆心角、弧、弦的关系定理证明结论