数值计算课后问题详解4文档格式.docx
《数值计算课后问题详解4文档格式.docx》由会员分享,可在线阅读,更多相关《数值计算课后问题详解4文档格式.docx(45页珍藏版)》请在冰豆网上搜索。
〔2〕
证明:
〔1〕由拉格朗日插值定理,以x0,x1,x2,…xn为插值节点,对y=f(x)=xk作n次插值,插值多项式为
,
而yi=xik,
同时,插值余项
结论得证。
〔2〕取函数
对此函数取节点
,如此对应的插值多项式为
由余项公式,得
令t=x,
4、给定数据〔
〕
f(x)
(1)试用线性插值计算f(2.3)的近似值,并估计误差;
(2)试用二次Newton插值多项式计算f(2.15)的近似值,并估计误差。
用线性插值计算f(2.3),取插值节点为2.2和2.4,如此相应的线性插值多项式是
用x=代入,得
(2)作差商表如下
一阶差商
二阶差商
三阶差商
0.3501
0.3407
0.6599
根据定理2,
f(x)=f(x0)+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+…
+f[x0,x1,…,xn](x-x0)(x-x1)…(x-xn-1)
+f[x0,x1,…,xn,x]π(x)。
以表中的上方一斜行中的数为系数,得
f(2.15)=1.41421+×
(-2.0)-×
(2.15-2.0)×
(2.15-2.1)
=1.663725
指出:
误差未讨论。
5、给定函数表
2
4
5
16
46
88
试求各阶差商,并写出牛顿插值多项式和插值余项。
作差商表如下
四阶差商
7
30
-3
21
-88
根据定理2,以表中的上方一斜行中的数为系数,得
余项未讨论。
5*、给定函数表
3
试求各阶差分,并求等距节点插值。
由条件,显然,x0=0,h=1,x=t。
作差分如下
一阶差分
二阶差分
三阶差分
四阶差分
14
-2
12
-140
42
-142
-130
根据等距节点插值公式,
指出:
在此题这种情况下,实际上
,也就是说,在这样的条件下,t的多项式就是x的多项式,可以直接转换。
一般情况下,把t的关系转换为x的关系需要根据x=x0+th,将t用x表示,即将
代入得到的多项式。
6、给定数据表
0.125
0.500
0.750
试用三次牛顿差分插值公式计算f(0.1581)与f(0.636)。
所给节点是等距结点:
计算差分得
五阶差分
0.125
0.79618
-0.02284
0.250
0.77334
-
0.375
0.74371
0.500
0.70413
0.625
0.65632
0.750
0.60228
令
根据等距结点插值公式,得
7、设f(x)在[-4,4]有连续的4阶导数,且
(1)试构造一个次数最低的插值多项式p(x),使其满足
(2)给出并证明余项f(x)-p(x)的表达式。
(1)由7*可以求出满足
的三次埃尔米特插值多项式
设
,如此p(x)满足
由
得
(2)余项具有如下结构
作辅助函数
如此显然
在点
处有6个零点〔其中0,3是二重零点〕,即
不妨假设
由罗尔定理,存在
使得
再注意到
,即
有5个互异的零点
再次由罗尔定理得,存在
第三次应用罗尔定理得,存在
第四次应用罗尔定理得,存在
第五次应用罗尔定理得,存在
注意到
〔
中p(t)是4次函数,其5次导数为0〕。
代入余项表达式,有
此题是非标准插值问题,比拟简单的求解方法有:
①求插值问题的根本方法是待定系数法。
以此题来说,有5个条件,可以确定一个4次的插值多项式,设为
,将条件代入,建立一个5元的线性方程组,求出各参数,就可以求出插值多项式。
②求插值问题的第二种方法是基函数法,即根据给定条件设定插值多项式的结构和各基函数的结构,根据条件确定基函数即可。
具体方法与拉格朗日插值基函数构造和埃尔米特插值基函数构造相似。
③以标准插值为根底的方法是一种更简单的方法,此题中,首先利用4个条件构造一个埃尔米特插值,在此根底上设定所求插值多项式的一般形式,保证其满足埃尔米特插值条件,代入未利用条件解方程〔组〕,求出其中的未知参数,即可求出插值多项式。
此题也可以先利用
构造一个2次插值多项式
,以此为根底构造4次插值多项式
的结构是
满足
再根据
列出两个线性方程组成的方程组,求出a、b两个参数,即可求出所求的插值多项式。
求插值函数余项
的常用方法是:
应具有如下形式〔以此题为例〕
处有6个零点〔其中0,3是二重零点〕。
反复应用罗尔定理,直到至少有一个
,使得
此时即有
代入余项表达式即可求出。
7*、设f(x)在[-4,4]有连续的4阶导数,且
试用两种方法构造三次埃尔米特插值多项式H(x),使其满足
解一〔待定系数法〕:
,如此
由插值条件得
解二〔基函数法〕:
因为线性拉格朗日插值基函数为
由④得
同理
由⑤得
8、设
,试作一个二次多项式p(x),使其满足
,并导出余项估计式。
设此二次式为
所以,由条件
将其代入
,得
所以,要求的二次多项式为
因为0是2重零点,1是1重零点,因此可以设余项具有如下形式:
其中K(x)为待定函数。
固定x,作辅助函数
显然
再次应用罗尔定理,存在
中p(t)是2次函数,其3次导数为0〕。
石瑞民《数值计算》关于余项讨论很清楚。
9、给出sinx在[0,π]上的等距结点函数表,用线性插值计算sinx的近似值,使其截断误差为
,问该函数表的步长h取多少才能满足要求?
为等距结点,步长为h,如此
当
时,作f(x)的线性插值
如此有
由此易知
因此
关于最大值的计算与12题一样。
10、求
在区间[a,b]上的分段埃尔米特插值,并估计误差。
由分段三次埃尔米特插值多项式
的分段埃尔米特插值为
其中
其余项估计式为
11、数据表
i
10
求三次样条插值函数。
这是第一类边界条件,要求解方程组
将以上数据代入方程组
将获得的数据代入到
中,得
12、设
〔具有二阶连续导数〕,且f(a)=f(b)=0,证明:
以a、b为节点进展插值,得
在
处取得最大值,故
-1
-0.1
0.1
0.4
0.9
1.6
用两种方法求其二次拟合曲线。
解一:
设所求的拟合函数为
对a、b、c分别求偏导,并令偏导数等于0,得
将各数据点的数值代入,得方程组为
解之得a=,b=0。
42,c=0.0857,
所以数据点所反映的函数的近似关系为
解二:
将数据代入方程得
方程组的系数矩阵和右端向量为
14、试验数据
19
25
31
38
44
19.0
32.3
49.0
73.3
97.8
用最小二乘法求形如
的经验公式,并计算均方误差。
对a、b分别求偏导,并令偏导数等于0,得
将数据代入得
化简得
第二个方程减去第一个方程乘以1065进一步化简得
如此x与y的函数关系是
y=1.x2。
此时,平方逼近误差为
所以,均方误差为
均方误差实际上就是按最小二乘法如此确定的残差。
15、观测物体的直线运动,得出如下数据:
时间t(s)
距离s(m)
50
80
110
求运动方程。
设运动方程为s=a+bt如此
将上述数据代入方程组
得方程组
所以,
利用统计型计算器,有关中间数据可以简单求出。
16、在某化学反响中,由实验得分解物浓度与时间关系如下:
时间t
15
20
35
浓度