镁合金轧制工艺文档格式.docx

上传人:b****3 文档编号:13780473 上传时间:2022-10-13 格式:DOCX 页数:18 大小:1.37MB
下载 相关 举报
镁合金轧制工艺文档格式.docx_第1页
第1页 / 共18页
镁合金轧制工艺文档格式.docx_第2页
第2页 / 共18页
镁合金轧制工艺文档格式.docx_第3页
第3页 / 共18页
镁合金轧制工艺文档格式.docx_第4页
第4页 / 共18页
镁合金轧制工艺文档格式.docx_第5页
第5页 / 共18页
点击查看更多>>
下载资源
资源描述

镁合金轧制工艺文档格式.docx

《镁合金轧制工艺文档格式.docx》由会员分享,可在线阅读,更多相关《镁合金轧制工艺文档格式.docx(18页珍藏版)》请在冰豆网上搜索。

镁合金轧制工艺文档格式.docx

第二类为轧制的工艺因素,如轧制温度、轧制变形量和轧制速度以及后续的热处理工艺。

国内外很多学者针对如何改进镁合金轧制工艺和轧制技术,以获得二次成形性能优良的板材做了大量的研究工作。

本文针对镁合金轧制过程中各工艺参数对轧件组织与性能的影响、弱化织构的方法及机理以及特殊轧制方式做以下介绍。

2轧制过程中的工艺参数

镁合金轧制过程中,轧制温度是关键参数。

Hosokawa等人对AZ31镁合金轧制的研究表明,轧制温度在225~400℃范围内时,轧制压下量可达85.7%以上而不出现裂纹;

200℃以下时,成形性能则较差,易出现裂纹。

陈维平等研究了300,330,360℃3个轧制温度对AZ31镁合金组织和硬度的影响。

结果表明,在同一变形量下,随着轧制温度的升高,板材的晶粒呈长大趋势,硬度逐步下降,在330℃轧制时,板材的综合性能较好。

镁合金散热较快,轧制过程中镁合金轧件与温度较低的轧辊直接接触,轧辊吸收较多热量,会降低镁合金的轧制性能。

轧制过程中轧辊温度的控制也对轧件性能有很大影响。

生产实践证明,若轧辊不预热,轧制过程中板材易产生表面裂纹和边裂;

若轧辊内部温度较低,在轧制过程中仍要吸收大量的热,亦会降低合金的轧制性能。

因此,轧制前一般要先将轧辊预热至150℃以上,在薄板轧制过程中则要保证轧辊温度维持在200~250℃范围内。

轧制变形量和轧制速度也是镁合金轧制过程中需考虑的两个重要参数。

变形量过大时,可能产生边裂;

而变形量过小时,不仅效率降低,还会影响板材的组织和性能。

镁合金一般采用多道次小压下量的轧制方式进行,冷轧条件下,AZ31镁合金的最大变形量可达15%,但一般都采用道次压下量小于5%,两次中间退火的总变形量小于25%的工艺。

然而近年来研究表明,在较高温度下也可进行大压下量轧制,大应变轧制是制备具有细晶组织的AZ31镁合金板材的简单而有效的工艺,制备的AZ31薄板,晶粒尺寸为2~5μm。

2.1轧制温度

轧制温度对镁合金板材轧件的组织与性能有很大影响。

轧制温度过低时,高的应力集中可导致孪晶形核和切变断裂;

而温度过高时,晶粒容易长大而使板材热脆倾向增大。

因此,必须调整和控制好轧制温度以获得符合性能要求的轧件。

镁合金轧制按照轧制温度可以分为:

高于再结晶温度的热轧,低于再结晶温度但高于冷轧温度的温轧以及冷轧。

AZ31B镁合金熔点为650℃,再结晶温度,再结晶温度为270℃左右。

重庆大学汪凌云等通过控制轧制温度以及退火制度等,设计出较好的轧制工艺。

2.1.1实验

实验所用材料为AZ31B镁合金板材。

热轧开轧温度为450℃~460℃,终轧温度为260℃~300℃,道次变形量控制在15%~20%,终轧压下量为5%~10%。

采用测温仪随时测量板料温度,当板料温度低于260℃时,对板材进行回炉加热,保温温度为430℃~450℃。

温轧温度低于260℃,温轧变形量控制在为25%~30%。

温轧温度在再结晶温度以下而又高于冷轧温度。

这种方式能够在一定程度上提高材料的塑性,降低加工硬化。

冷轧阶段采用多道次小变形量的方法轧制板料。

单道次变形量控制在5%以内,两次中间退火间累计变形量不大于25%。

中间退火制度采用300℃下保温1h。

轧制时在轧辊上增加了轧辊控温装置,使得在轧制过程中轧辊的温度始终控制在100℃~160℃左右。

实验时在热轧、温轧和冷轧终了时的板材进行了0°

,45°

和90°

3个方向的取样并进行单向拉伸试验。

2.1.2组织与性能

2.1.2.1热轧

轧制得到的板料边裂很小,表面光洁度好。

当终轧温度低于260℃,道次变形量高于15%时就出现了严重的边裂,甚至板材中部出现裂纹。

在热轧过程中增加了轧辊的控制装置,使轧辊温度始终保持在100℃~160℃左右,同时将轧件多次反复加热,使轧件温度始终控制在热轧范围内,从而减小了裂纹的产生和发展。

图1为AZ31B镁合金板材在300℃终轧后的显微组织。

从图1可以看出,AZ31B镁合金在300℃轧制后,为均匀的再结晶组织。

平均晶粒直径为40μm。

热轧后板材力学性能见表1。

图1AZ31B镁合金热轧板材显微组织

2.1.2.2温轧

温轧的目的是在一定的温度下(高于冷轧低于热轧),采用较大的变形量,从而得到了抗拉强度比热轧后高的抗拉强度,厚度比热轧小的板材。

AZ31B镁合金典型的温轧工艺为:

温轧温度不大于260℃,温轧变形量为25%~30%。

由于镁合金室温下塑性较差,为了保证压下量的需要,考虑到轧辊温度保持在100℃~160℃左右,温轧的终轧温度在100℃左右。

所以,温轧工艺的实施主要存在工艺温度范围窄、温度很难保证均匀的缺点,大规模生产时很难控制。

而且当温度低于300℃时,采用大变形量轧制会出现严重的边裂,甚至中部也出现裂纹。

图2为AZ31B镁合金温轧后板材显微组织,其力学性能见表1。

图2AZ31B镁合金温轧板材显微组织

2.1.2.3冷轧

冷轧时采用小变形量多道次轧制,冷轧道次变形量一般为5%左右,总变形量约为25%。

这样在轧制过程中不会出现严重的边裂和中部裂纹。

但是,当进一步增加变形量时就出现严重的边裂和裂纹,这说明AZ31B镁合金板材在冷轧时的总变形量不能过大,最好控制在25%~30%左右。

图3为AZ31B镁合金冷轧变形后的显微组织。

由图3可知,AZ31B镁合金经过冷变形后组织“破碎”,尤其是晶界处的变形量较大,在金相试样侵蚀时很容易腐蚀而出现沟壑,在晶内则出现了大量的孪晶。

冷轧后,形成了加工硬化,延伸率降低,并且由于晶粒转动产生了大量变形织构,形成了各向异性。

冷轧AZ31B镁合金板材的力学性能见表1。

图3AZ31B镁合金冷轧板材显微组织

轧后厚度

/mm

取向

/MPa

δ/%

热轧

2.0

225-230

17-18

45°

225-235

17-20

90°

230-235

17-19

温轧

1.6

288

15

285

16

286

17

冷轧

1.0

300

9

287

298

10

表1AZ31B镁合金板材力学性能

2.2轧制变形量

镁合金为密排六方结构,变相能力较差,轧制时道次变形量过大会导致出现裂纹。

冷轧时一般采用小变形量多道次轧制,道次变形量只有5%。

升高温度可以增加塑性,高温下轧制会发生动态再结晶,轧件可以承受较大的变形量。

重庆大学张丁非等研究了同一热轧温度下不同道次压下量以及不同道次轧制时轧件的组织性能的变化。

2.2.1实验

实验材料为AZ31镁合金板材,轧制前板坯的原始尺寸为100mm×

30mm×

16mm。

轧制前先将AZ31板材在400℃下退火300min,随即进入双辊不可逆轧机进行不同压下量多道次的轧制实验。

每轧制一道次留样,并将留样淬火,将其他样品回炉保温5min后进行下一道次的轧制,观察并记录不同变形率下轧制的表面质量。

轧制温度/℃

道次压下量/mm

轧制道次

400

1

11

2

5

3

4

表2实验方案

2.2.2实验结果及分析

在400℃不同压下量不同道次时轧制试样的宏观表面状况,裂纹从头部开始出现,然后边裂紧接着发生,且每道次压下量越大,能够保证不开裂的道次数越少。

每道次压下量1mm,轧制8个道次不会产生裂纹,累积变形量为50%。

每道次轧制压下量2mm,轧制3个道次不会产生裂纹,累积变形量为37.5%。

而在每道次轧制压下量为3,4mm的情况下,仅能进行两个道次不开裂轧制,故AZ31镁合金不适合在单次变形量较大的情况下轧制。

轧制温度

/℃

道次压下量

质量

表面、边部质量良好的道次

心部出现裂纹的道次

心部边部轧裂的道次

1-8

9-10

1-3

1-2

-

图4400℃时每道次压下量为1mm的显微组织

(a)第2道次(b)第5道次(c)第8道次(d)第11道次

(1)边部组织

(2)心部组织

图5每道次显微硬度和边部与心部晶粒尺寸的对比

(a)显微硬度;

(b)晶粒尺寸

图4为400℃条件下,每道次压下1mm时第2,5,8,11道次时边部和中间组织的金相图。

图2为每道次压下1mm时的显微硬度和不同道次中间与边部区域组织的晶粒尺寸的对比。

从图4结合图5(b)可以看出,在前4个道次,边部和中间组织的晶粒尺寸区别较明显,由于边部变形程度比中间大,故位错密度也较大,在较高的温度下,发生了回复再结晶,而中间的组织大多数尚存其原始形态。

第5~8道次边部的再结晶组织的晶粒发生了晶粒长大,而且长大的较均匀,同时中间的组织也由于累积变形量的增大而开始发生动态再结晶(见图4(c))。

第9到12道次,由于累积的应变量过大,内应力激增,应力集中在这些区域越来越严重,从而产生裂纹,并伴随着裂纹及附近区域晶粒的再结晶细化。

图4(d)显示了这种裂纹的产生情况。

从图5(b)可以看出,晶粒尺寸的变化是比较有规律的,都是先增大后减小,这是由于累积应变量的影响,由于每道次轧制后退火5min不足以消除内应力,从而累积。

由图5(b)还可知前7个道次轧制情况下,边部组织和中间组织的晶粒尺寸相差较大,组织较不均匀。

研究表明:

组织越均匀晶粒越细小,材料的综合性能越好,而第8道次,边部组织和中间组织的晶粒度相近分别为中间8.9μm,边部9.2μm,组织较均匀,显微硬度值为67高于平均值,而且从金相图可以看到明显的晶粒细化,故400℃左右,每道次压下量为1mm时,轧制到第8道次总变形量为50%是一个较好的轧制条件。

图6400℃时每道次压下2mm的显微组织

(a)第3道次(b)第6道次

(1)边部组织

(2)心部组织

图7每道次显微硬度和

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1