开关电源闭环设计详细说明Word下载.docx

上传人:b****2 文档编号:13735506 上传时间:2022-10-13 格式:DOCX 页数:16 大小:317.62KB
下载 相关 举报
开关电源闭环设计详细说明Word下载.docx_第1页
第1页 / 共16页
开关电源闭环设计详细说明Word下载.docx_第2页
第2页 / 共16页
开关电源闭环设计详细说明Word下载.docx_第3页
第3页 / 共16页
开关电源闭环设计详细说明Word下载.docx_第4页
第4页 / 共16页
开关电源闭环设计详细说明Word下载.docx_第5页
第5页 / 共16页
点击查看更多>>
下载资源
资源描述

开关电源闭环设计详细说明Word下载.docx

《开关电源闭环设计详细说明Word下载.docx》由会员分享,可在线阅读,更多相关《开关电源闭环设计详细说明Word下载.docx(16页珍藏版)》请在冰豆网上搜索。

开关电源闭环设计详细说明Word下载.docx

因此,首先选择稳定的参考电压.通常为5〜6T或2.5\\要求极小的动态电阻和温度漂移。

其•次要求开环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。

一般功率电路、滤波和PWM发生电路增益低,只有釆用运放(误差放大器)来获得高增益。

再有,由于输出滤波器有两个极点,最大相移180。

,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。

根据不同的电路条件,可以采用Venable三种补偿放大器。

补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。

6.4.1概述

图6.31为一个典型的正激变换器闭环调节的例子。

可以看出是一个负反馈系统。

PWN控制芯片中包含了误差放大器和PWH形成电路。

控制芯片也提供许多其他的功能,但了解闭环稳定性问题,仅需考虑误差放大器和PWMo

对于辙出电压仏缓慢或直流变化•闭环当然是稳定的。

例如输入电网或负载变化(干扰),引起伉的变化,经用和底取样(反馈网络),送到误差放大器EA的反相输入端,再与加在EA同相输入端的参考电压(输入电压)%比较。

将引起EA的输出直流电平%变化,再送入到脉冲宽度调制器PWM的输入端A。

在PWM中,直流电平儿与输入B端0〜3V三角波比较,产生一个矩形脉冲输出,其宽度加等于三角波开始时间t0到PWM输入B三角波与直流电平相交时间tl。

此脉冲宽度决定了芯片中输出晶体管导通时间,同时也决定了控制晶体管Q1的导通时间。

久的增加引起仏的增加,因UfUZT.伉也随之增加。

氏増加引起比增加,并因此久的减少。

从三角波开始到tl的厶相应减少,瓦恢复到它的初始值。

当然,反之亦然。

PWM产生的信号可以从芯片的输出晶体管发射极或集电极输出,经电流放大提供Q1基极驱动。

但不管从那一点一发射极还是集电极一输出,必须保证当仏増加,要引起仏减少,即负反馈。

图6.31典型的正澈变换器闭环控制

应当注意,大多数PWM芯片的输出晶体管导通时间是t0到tl。

对于这样的芯片,仏送到EA的反相输入端,PUM信号如果驱动功率7PN晶体管基极(N沟道MOSFET的栅极),则芯片输出晶体管应由发射极输出。

然而,在某些P側芯片(TL494)中,它们的导通时间是三角波仏与直流电平(弘)相交时间到三角波终止时间t2。

对于这样的芯片,如果驱动NPN晶体管,输出晶体管导通(如果从芯片的输出晶体管发射极输出),这样会随晶体管导通时间增加,使得伉增加,这是正反馈,而不是负反馈。

因此,TL494一类芯片,从送到EA的同相输入端,E增加使得导通时间减少,就可以采用芯片的输出晶体管的发射极驱动。

图6.31电路是负反馈且低频稳定。

但在环路,存在低电平噪音电压和含有丰富连续频谱的瞬态电压。

这些分量通过输出厶滤波器、误差放大器和弘到从的PWM调节器引起增益改变和相移。

在谐波分量中的一个分量,增益和相移可能导致正反馈,而不再是负反馈,在6.2.7节我们已讨论过闭环振荡的机理。

以下就开关电源作加体分析。

6.4.2环路增益

还是来研究图6.31正激变换器。

假定反馈环在B点一连接到误差敖大器的反相输入端断开成开环。

任何一次谐波分量的噪声从B经过EA放大到%由弘传递到电压&

的平均值•和从厶》的平均值通过

返回到(正好是先前环路断开点)都有增益变化和相移。

这就是6.2.7讨论的环路増益信号通路。

如果假定某个频率£

的信号在B注入到环路中,回到B的信号的幅值和相位被上面提到回路中的元件改变了。

如果改变后的返回的信号与注入的信号相位精确相同,而且幅值等于注入信号,即满足GH=-lo要是现在将环闭合(B连接到BQ,并且注入信号移开,电路将以频率£

继续振荡。

这个引起开始振荡的£

是噪声频谱中的一个分量。

为达到输出电压(或电流)的静态精度,误差放大器必须有高增益。

高增益就可能引起振荡。

误差放大器以外的传递函数一般无法改变.为避免加入误差放大器以后振荡,一般通过改变误差放大器的频率特性(校正网络),使得环路频率特性以-20dB/dec穿越,并有45。

相位裕度,以达到闭环的稳定。

以下我们研究误差放大器以外的电路传递函数的频率特性。

1.带有LC滤波电路的环路增益Q

除了反激变换器(输出滤波仅为输出电容)外,这里讨论的所有拓扑都有输出滤波器。

通常滤波器设计时根据脉动电流为平均值(辙出电流)的20%选取滤波电感。

根掲允许输出电压纹波和脉动电流值以及电容的ESR选取输出滤波电容。

如果电解电容没有ESR(最新产品),只按脉动电流和允许纹波电压选取。

由此获得输出滤波器的谐振频率,特征阻抗,ESR零点频率。

在频率特性一节图6.7示出了LC滤波器在不同负载下的幅频和相频特性。

为简化讨论,假定滤波器为临界阻尼允二1.0Z”带有负载电阻的输出LC滤波器的幅频特性如图6.32(a)中12345所示。

此特性假定输出电容的ESR为篆。

在低频时,XQ〉X“输入信号不衰减,增益为1即OdB。

在托以上,每十倍频C,阻抗以20dB减少,而厶阻抗以20dB增加,使得增益变化斜率为一40dB/dec<

当然在兀增益不是突然转变为一2斜率的。

实际上在兀前増益曲线平滑离开OdB曲线,并在兀后不久渐近趋向一40dB/dec斜率。

这里为讨论方便,增益曲线突然转向一40dB/deCo

如果使相应于^=1.0Zo条件下稳定,那么在其它负载也将稳定。

但应研究电路在轻载(R・〉>

1・OZQ时的特性,因为在滤波器转折频率Q克增益谐振提升。

图6.32临界阻尼LC滤波器输出电容无ESR(a)和有ESR(b)幅频特性

滤波电容有ESR的滤波器幅频特性如图6.35b的曲线123456。

大多数滤波电容具有ESR。

在坨以上的低频段,容抗远远大于ESR,从瓦看到阻抗仅是容抗起主要作用,斜率仍为-40dB/dec;

在更高

频时、\[gjC«

R旳.从输出端看的阻抗只是必比在此频率围,电路变为/斤滤波,而不是LC滤波。

(6-55)

式中转折频率G=Rd(2n£

o在此频率围,感抗以20dB/dec增加,而ESR保持常数,增益以-20dB/dec斜率下降。

幅频特性由-40dB/dec转为-20dB/dec斜率点为这里电容阻抗等于ESR。

ESR提供一个寒点。

转变是渐近的,但所示的突然转变也足够精确。

2.PWM增益

图6.32(a)中由误差放大器输出到电感输入电压弘的平均值儿的增益是卩脚增益,并定义为氐,

一般电压型控制芯片中误差放大器的输出仏与部三角波比较产生PWM信号调整输出电压。

三角波的幅值0〜3V(实际上是0・5、3V)。

如果芯片控制推挽(桥式.半桥)电路,变压器频率是芯片频率的一半,占空比〃随误差放大器输出可以在0~1之间改变。

如果是正激,只釆用一半脉冲,占空度在0、0・5之间改变。

在图6.34b中,当弘=0,圧在%的宽度为零,弘也为零。

如果乩移动到3V,在三角波的峰值,纭/T二》0・5,仏的平均值就是儿=(&

厂1)〃,其中&

是变压器次级电压,1为整流二极管压降。

则调制器的直流增益为弘与弘的比值

(6-56)

此增益与频率无关。

3.取样增益一反馈系数

图6.31中还有一个增益衰减,就是用和胫组成的采样电路。

大多数PWM芯片的误差放大器的参考输入端不可能大于2.5V,因此如果输出电压一旦决定,此增益即为

(6-57)

如果输出5V,采样电阻RfR2,丛(弘f)与仏之间的增益为-6dB,即1/2。

4.输出LC滤波器加上PWM和采样网络的总增益

为了得到环路增益波特图,我们先将输出ZC滤波器增益G、PWM增益E和采样网络增益E之和G如图6.33所示。

从0Hz(直流)到频率/0=\/2^y[LC的增益是G皿、这里LC滤波器增益为零。

在兀转折为-40dB/dec斜率,并保持此斜率一直到这里电容阻抗等于水円。

在这个频率它转折为斜率-20dB/deco由这个曲线可以确定误差放大器的幅频和相频特性以满足稳定环路的两个判据。

6.4.3误差放大器的幅频特性整形

如果将开关电源的闭环作为一个放大器来研究,放大器输入信号为开关电源的参考电压。

从负反馈组态来说是一个电压串联负反馈。

这里误差放大器是一个同相放大器。

从误差放大器的同相端到误差放大器输出.PWM发生.电源输出和取样返回到误差放大是反相输入端.在任何频率在增益下降到OdB时附加相位移小于135。

o以下来讨论误差放大器的补偿。

为讨论方便,取样信号加在反相端,放大器输出总是反相,反馈信号返回到反相端附加相移不能超过135。

,即45°

相位裕度。

第T首先建立穿越频率仏在此频率总增益为OdB。

舍宝|择误差放大器的增益,学濃翩路增益在总为OdB-二-步设计误差放大器的增益斜率,以使得总开环增益在【斜率-20dB/dec穿越(图6.18)。

最后,调整幅频待性达到希望的相位裕度。

采样理论指出,为了闭环的稳定,卷必须小于开关频率的一半。

但必须远远小于开关频率,否则有较大幅值的开关频率纹波。

一般经验取凡为开关频率的1/4'

1/5。

参考图6.33中除误差放大器以外的环路增益G是"

?

滤波器増益G,、调节器增益G和检测网络增益久之和。

假定滤波电容有ESR,在£

和由斜率-40dB/dec转折为-20dB/deco假定池=1/5人/;

•—开关频率。

要使血增益为OdB,误差放大器的增益应当等于G在此频率读取增益衰减量。

在大多数情况下,滤波电容具有ESR,且低于总。

因此在池的G二G七+G的曲线总是斜率为-20dB/dec。

要独得在几的总开环增益为零.误差放大器在池的增益与G值相等符号相反°

Gf

如果误差放大器幅频特性在总为水平线,则合成的总开环幅频特性G在忌以斜率-20dB/dec穿越。

这就满足了稳定电路的第二个判据。

运算放大器的反相比例运算(图6.34)就可以获得水平的増益曲线,调整Gf-R/Ri的大小获得所需的增益。

环路增益是误差放大器的增益和G之和。

如果运放保持常数增益一直到直流,总的开环增益在100Hz就比较小,不能有效抑制交流电源纹波。

为了在输出端将交流纹波降到很低水平,开环增益在低频时尽可能高,因此在的左边开环增益应当迅速增加。

为此,在误差放大器反馈电阻电路底串联一个电容G(图6.34b)。

低频增益如图6.36所示。

在髙频围,C的大容抗小于凡•増益是水平线,而在低频围,G容抗大于R“增益为X」R“增益以+20dB/dec向低频增加,并在100Hz处产生较高的增益。

向高频方向,斜率-20dB/dec,并在/>

(2n^)-1处转向水平。

在£

的右端的高频端(图6.33),如

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 法律文书 > 判决书

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1