极坐标与极坐标方程Word文档格式.docx
《极坐标与极坐标方程Word文档格式.docx》由会员分享,可在线阅读,更多相关《极坐标与极坐标方程Word文档格式.docx(12页珍藏版)》请在冰豆网上搜索。
对于平面内任意一点,用表示线段的长度,表示从到的角度,叫点的极径,叫点的极角,有序数对就叫点的极坐标。
这样建立的坐标系叫极坐标系,记作.若点在极点,则其极坐标为=0,可以取任意值。
图1-1图1-2
如图1-2,此时点的极坐标可以有两种表示方法:
(1)>0,
(2)>0,
同理,也是同一个点的坐标。
又由于一个角加后都是和原角终边相同的角,所以一个点的极坐标不唯一。
但若限定,,那么除极点外,平面内的点和极坐标就可以一一对应了。
1.2曲线的极坐标方程
在极坐标系中,曲线可以用含有这两个变数的方程来表示,这种方程叫曲线的极坐标方程。
求曲线的极坐标方程的方法与步骤:
1°
建立适当的极坐标系,并设动点的坐标为;
2°
写出适合条件的点的集合;
3°
;
4°
化简所得方程;
5°
证明得到的方程就是所求曲线的方程。
三种圆锥曲线统一的极坐标方程:
图1-3
过点作准线的垂线,垂足为,以焦点为极点,的反向延长线为极轴,建立极坐标系。
设是曲线上任意一点,连结,作⊥,⊥,垂足分别为.那么曲线就是集合.
设焦点到准线的距离,
得
即
这就是椭圆、双曲线、抛物线的统一的极坐标方程。
其中当时,方程表示椭圆,定点是它的左焦点,定直线是它的左准线。
时,方程表示开口向右的抛物线。
时,方程只表示双曲线右支,定点是它的右焦点,定直线是它的右准线。
若允许,方程就表示整个双曲线。
1.3极坐标和直角坐标的互化
把直角坐标系的原点作为极点,轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设是平面内任意一点,其直角坐标,极坐标是,从点作
⊥,由三角函数定义,得.
图1-4
进一步有
注:
在一般情况下,由确定角时,可根据点所在的象限取最小角。
2极坐标在平面解析几何中的应用
2.1极坐标法求到定点的线段长度
解析几何中涉及到某定点的线段长度时,可以考虑利用极坐标法求解。
但是绝大多数解析几何问题中题设条件是以直角坐标方程形式给出的,在求解过程中运算繁琐复杂,将此类问题转化为用极坐标方程求解,十分简洁,收到良好的效果。
巧设极点,建立极坐标系是解决问题的关键。
2.1.1以定点为极点
如果题设条件与结论中,涉及到过某定点的线段长度问题,应该取该点为极点,先将直角坐标原点移动到点,施行平移公式、直角坐标与极坐标互化公式,化普通方程为极坐标方程求解。
例1设等腰的顶角为,高为,在内有一动点,到三边的距离分别为,并且满足关系,求点的轨迹。
图2-1
解:
如图2-1所示,以为极点,∠的平分线为极轴,建立极坐标系,设点极坐标为,则
由得
化简得
化成直角坐标方程为
这是以为圆心,以为半径的圆,所求的轨迹是该圆在等腰内部的部分。
2.1.2以原点为极点
如果题设条件或结论中涉及到直角坐标系原点的线段长度时,应选取原点为极点,应用互化公式,将直角坐标方程转化极坐标方程求解。
例2已知椭圆,直线:
,是上一点,射线交椭圆于,又点在上,且满足,当点在上移动时,求点的轨迹方程,并说明轨迹是什么曲线。
如图2-2所示,以为极点,为极轴,建立极坐标系。
则由互化公式知椭圆的极坐标方程为
(1)
直线的极坐标方程为
(2)
,则由
(1)式知
由
(2)式知
又,有
所以
点的轨迹是以为中心,长轴、短轴分别为且长轴平行与轴的椭圆,去掉坐标原点。
图2-2
2.1.3以焦点为极点
凡涉及圆锥曲线的焦半径或焦点弦长度的问题,应选取焦点为极点(椭圆左焦点,双曲线右焦点),应用圆锥曲线统一的极坐标方程求解。
例3设为抛物线的顶点,为焦点,且为过的弦。
已知
。
图2-3
如图2-3所示,以为极点,的反向延长线为极轴,建立极坐标系。
则抛物线的极坐标方程为
于是
2.2极坐标简解与角有关的解析几何题
含有已知角或公共顶点的一类解析几何题,运用极坐标系(或化直角坐标系为极坐标系)进行解题,常可避繁就简,化难为易,达到事半功倍的效果。
下面分类举例说明。
2.2.1含有已知角,角顶点为极点
例4已知在∠的两边上,∠=,的面积为8,求的中点的轨迹方程。
图2-4
解:
以为极点,为极轴,建立极坐标系,如图2-4所示,设
,则
即
(1)
因为
所以
(2)
(3)
得
(4)
(1)代入(4)并化简,得即为所求。
2.2.2含有已知角,坐标轴平移,化角顶点为极点
例5已知曲线:
,顶点(2,0),点是上的动点,是以为斜边的等腰直角三角形,顶点按顺时针排列,为坐标原点,求的最大值及点的坐标。
图2-5
曲线化为:
,以点为新坐标系原点,则
曲线为
以点为极点,轴的正方向为极轴,建立极坐标系。
如图2-5所示,则曲线为
(1)
设,则
(2)
(2)代入
(1)得
所以点的轨迹方程为
即(3)
故当过(3)的圆心时,的最大值为,此时点的坐标为.
2.3极坐标法证明几何定理
在平面几何证明中,极坐标法是一种重要的方法,应用十分广泛,下面以部分平面几何中著名定理为例,谈谈极坐标法在证明中的应用。
2.3.1应用圆心是,半径是的圆的方程来证明
例6求证:
圆内接四边形两组对边乘积的和等于两条对角线的乘积(托列迷定理)。
证明:
如图2-6,以为极点,的延长线为极轴建立极坐标系。
设圆的半径为,则:
.
、、三点都在上,
另由正弦定理得
图2-6
2.3.2应用极点在圆上,圆心为的方程证明
例7自圆上一点引三弦,并以它们各自为直径画圆。
求证:
所画三圆的其它三交点共线(沙尔孟定理)。
图2-7
如图2-7,分别是的直径,分别是的交点,以为极点,的延长线为极轴建立极坐标系,为简便计,设,极轴与的交角分别为,则
所以
(1)
(2)
设,则由
(1)、
(2)得
取,得,代入
(1)中,得.
点坐标为.同理应用轮换得点坐标为,点坐标为.
显然三点坐标满足法线式方程
故三点共线,命题获证。
2.3.3应用圆的极坐标方程、两点或直线方程和法线式方程证明
例8求证:
三角形外接圆上任一点在三边上的射影共线(西摩松定理)。
图2-8
如图2-8,以为极点,的延长线为极轴建立坐标系。
设的外接圆直径为,则的方程为,设顶点为
的两点式方程为.
这是的法线式方程,故知垂足的坐标为.轮换三个顶点的坐标,得,显然三点的坐标满足法线式方程
三点共线,定理得证。