二次函数中考(平行四边形)含答案.doc
《二次函数中考(平行四边形)含答案.doc》由会员分享,可在线阅读,更多相关《二次函数中考(平行四边形)含答案.doc(9页珍藏版)》请在冰豆网上搜索。
二次函数(平行四边形)
1.如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.
(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?
②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?
解答:
解:
(1)当m=2时,y=(x﹣2)2+1,
把x=0代入y=(x﹣2)2+1,得:
y=2,
∴点B的坐标为(0,2).
(2)延长EA,交y轴于点F,
∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,
∴△AFC≌△AED,
∴AF=AE,
∵点A(m,﹣m2+m),点B(0,m),
∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,
∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,
∴△ABF∽△DAE,
∴=,即:
=,
∴DE=4.
(3)①∵点A的坐标为(m,﹣m2+m),
∴点D的坐标为(2m,﹣m2+m+4),
∴x=2m,y=﹣m2+m+4,
∴y=﹣•++4,
∴所求函数的解析式为:
y=﹣x2+x+4,
②作PQ⊥DE于点Q,则△DPQ≌△BAF,
(Ⅰ)当四边形ABDP为平行四边形时(如图1),
点P的横坐标为3m,
点P的纵坐标为:
(﹣m2+m+4)﹣(m2)=﹣m2+m+4,
把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:
﹣m2+m+4=﹣×(3m)2+×(3m)+4,
解得:
m=0(此时A,B,D,P在同一直线上,舍去)或m=8.
(Ⅱ)当四边形ABDP为平行四边形时(如图2),
点P的横坐标为m,
点P的纵坐标为:
(﹣m2+m+4)+(m2)=m+4,
把P(m,m+4)的坐标代入y=﹣x2+x+4得:
m+4=﹣m2+m+4,
解得:
m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,
综上所述:
m的值为8或﹣8.
【例二】已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
A
A
B
B
O
O
x
x
y
y
图①
图②
(3)连接OA、AB,如图②,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?
若存在,求出P点的坐标;若不存在,说明理由。
【例三】(2013•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.
(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?
若存在,求出P点坐标;若不存在,说明理由.
解答:
解:
(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.
∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,
∴∠OAB=∠ACD,∠OBA=∠CAD.
∵在△AOB与△CDA中,
∴△AOB≌△CDA(ASA).
∴CD=OA=1,AD=OB=2,
∴OD=OA+AD=3,
∴C(3,1).
∵点C(3,1)在抛物线y=x2+bx﹣2上,
∴1=×9+3b﹣2,解得:
b=﹣.
∴抛物线的解析式为:
y=x2﹣x﹣2.
(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:
AB=.
∴S△ABC=AB2=.
设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),
∴,
解得k=﹣,b=2,
∴y=﹣x+2.
同理求得直线AC的解析式为:
y=x﹣.
如答图1所示,
设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.
△CEF中,CE边上的高h=OD﹣x=3﹣x.
由题意得:
S△CEF=S△ABC,
即:
EF•h=S△ABC,
∴(﹣x)•(3﹣x)=×,
整理得:
(3﹣x)2=3,
解得x=3﹣或x=3+(不合题意,舍去),
∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.
(3)存在.
如答图2所示,
过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.
过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.
过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,
∴PH=BG=1,AH=CG=3,
∴OH=AH﹣OA=2,
∴P(﹣2,1).
抛物线解析式为:
y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.
∴存在符合条件的点P,点P的坐标为(﹣2,1).
【例四】(2013•盘锦)如图,抛物线y=ax2+bx+3与x轴相交于点A(﹣1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF.
(1)求抛物线的解析式;
(2)当四边形ODEF是平行四边形时,求点P的坐标;
(3)过点A的直线将
(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式.(不必说明平分平行四边形面积的理由)
解答:
解:
(1)∵点A(﹣1,0)、B(3,0)在抛物线y=ax2+bx+3上,
∴,
解得a=﹣1,b=2,
∴抛物线的解析式为:
y=﹣x2+2x+3.
(2)在抛物线解析式y=﹣x2+2x+3中,令x=0,得y=3,∴C(0,3).
设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:
,
解得k=﹣1,b=3,
∴y=﹣x+3.
设E点坐标为(x,﹣x2+2x+3),则P(x,0),F(x,﹣x+3),
∴EF=yE﹣yF=﹣x2+2x+3﹣(﹣x+3)=﹣x2+3x.
∵四边形ODEF是平行四边形,
∴EF=OD=2,
∴﹣x2+3x=2,即x2﹣3x+2=0,
解得x=1或x=2,
∴P点坐标为(1,0)或(2,0).
(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与▱ODEF对称中心的直线平分▱ODEF的面积.
①当P(1,0)时,
点F坐标为(1,2),又D(0,2),
设对角线DF的中点为G,则G(,2).
设直线AG的解析式为y=kx+b,将A(﹣1,0),G(,2)坐标代入得:
,
解得k=b=,
∴所求直线的解析式为:
y=x+;
②当P(2,0)时,
点F坐标为(2,1),又D(0,2),
设对角线DF的中点为G,则G(1,).
设直线AG的解析式为y=kx+b,将A(﹣1,0),G(1,)坐标代入得:
,
解得k=b=,
∴所求直线的解析式为:
y=x+.
综上所述,所求直线的解析式为:
y=x+或y=x+.
【例六】如图,抛物线经过三点.
(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?
若存在,求点N的坐标;若不存在,请说明理由.
x
y
A
O
C
B
(第26题图)
解析:
解:
(1)设抛物线的解析式为,
x
y
A
O
C
B
(第26题图)
P
N
M
H
根据题意,得,
解得
∴抛物线的解析式为:
………(3分)
(2)由题意知,点A关于抛物线对称轴的对称点为点B,连接BC交抛物线的对称轴于点P,则P点即为所求.
设直线BC的解析式为,
由题意,得解得
∴直线BC的解析式为…………(6分)
∵抛物线的对称轴是,
∴当时,
∴点P的坐标是.…………(7分)
(3)存在…………………………(8分)
(i)当存在的点N在x轴的下方时,如图所示,∵四边形ACNM是平行四边形,∴CN∥x轴,∴点C与点N关于对称轴x=2对称,∵C点的坐标为,∴点N的坐标为………………………(11分)
(II)当存在的点在x轴上方时,如图所示,作轴于点H,∵四边形是平行四边形,∴,
∴Rt△CAO≌Rt△,∴.
∵点C的坐标为,即N点的纵坐标为,
∴即
解得
∴点的坐标为和.
综上所述,满足题目条件的点N共有三个,
分别为,,………………………(13分)
第9页共9页