AFP自动铺丝机Word格式文档下载.docx

上传人:b****4 文档编号:13604474 上传时间:2022-10-12 格式:DOCX 页数:11 大小:774.40KB
下载 相关 举报
AFP自动铺丝机Word格式文档下载.docx_第1页
第1页 / 共11页
AFP自动铺丝机Word格式文档下载.docx_第2页
第2页 / 共11页
AFP自动铺丝机Word格式文档下载.docx_第3页
第3页 / 共11页
AFP自动铺丝机Word格式文档下载.docx_第4页
第4页 / 共11页
AFP自动铺丝机Word格式文档下载.docx_第5页
第5页 / 共11页
点击查看更多>>
下载资源
资源描述

AFP自动铺丝机Word格式文档下载.docx

《AFP自动铺丝机Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《AFP自动铺丝机Word格式文档下载.docx(11页珍藏版)》请在冰豆网上搜索。

AFP自动铺丝机Word格式文档下载.docx

随现代大型飞机中应用的复材整体构件轮廓复杂度越来越高,尺寸也越来越大,传统AFW和ATL已无法满足航空飞机制造实际应用需求。

为此,上世纪80年代末产生了将AFW机床缠绕功能和ATL机床层铺、压紧、切割和重铺等加工能力融合集成在一台设备上,此即出现了自动纤维铺放机床(AFP),也叫自动铺丝机。

图2AFP机床基本结构

典型AFP机床基本结构如图2所示,主要包括有可实现机床铺放头正交3轴运动的机床主体装置、回转芯模支撑与驱动装置、带双转动坐标轴的铺丝头功能部件和纤维经轴架辅助装置。

从功能上讲,AFP和ATL一样都是利用滚压辊将预浸料纤维“束带”精确地铺放到确定位置上。

但和ATL机床相比不同的是,首先AFP可根据铺放层轮廓形状需求有目的地选择1~n个“纤维束”来组成确定形状的束带,因而可层铺复杂的、甚至带窗口的曲面;

其次,AFP机床通常设计有一个驱动芯模回转的旋转坐标轴,被称为芯模旋转轴(卧式)或芯模旋转工作台(立式)。

显然,这是继承了AFW机床的结构和功能。

因此,和AFW/ATL机床相比,AFP机床结构和控制功能也就更复杂些。

自动铺丝机AFP机床一出现,立即在飞机复材整体构件制造中得到了广泛应用。

世界一些着名的数控加工机床制造商和专业复材构件加工设备制造商针对航空飞机制造用户不同需求,都在极力快速地推出他们最新的各种不同类型的AFP机床,以期占领更多市场份额。

AFP机床铺丝头

铺丝头是AFP机床最为关键的功能部件。

典型AFP机床铺丝头一般包括有纤维束(FiberTow)牵丝分配辅助装置、送进、夹紧、剪切、重送、加热和滚压等装置构成,以实现AFP机床的各种铺放功能。

这里以Cincinnati公司的AFP机床铺丝头为例,对其基本结构作一简要介绍,见图3。

图3AFP铺放头及其结构原理图

1.纤维束牵丝分配辅助装置

纤维铺放过程中,单根预浸料纤维一般被称为“纤维束”,由纤维经轴架中被引出,通过牵丝装置引导在铺丝头处,若干并列的纤维束构成了具有特定宽度的“纤维束带”(Band/Tows)薄层。

这种复材纤维束带薄层在AFP机床CNC系统控制下可被精确地铺放在工件模具表面上某一确定的位置处。

目前,AFP纤维束典型的是由12K单独的长纤维(filaments)组成的,纤维束标准宽度有3.2/6.4/12.7mm三种,最常用的为3.2mm。

通常,纤维束典型的是以螺旋形式绕制在一种直径7.6cm和长达28cm的中空的线轴上。

对宽度3.2mm材料IM7-12K纤维束线轴,重量约为2.3kg,长度可达3350m。

AFP应用中,纤维束宽度精度对控制两束间缝隙是很重要的。

比如,一个被设计用来装载3.2±

0.38mm宽纤维束的铺丝头,意味着纤维束将被限制在3.2mm曲面空间内。

如果纤维束实际宽恰好为3.2mm,那么铺放的两纤维束间不存在有缝隙。

如果实际宽度仅为2.5mm,铺放的两纤维束间存在有0.7mm缝隙,如果实际宽度为3.8mm,铺放的两纤维束间存在有0.6mm重区。

目前,纤维“束带”最多可由32根纤维束组成,束带最大宽度可达102/406mm。

通常每条纤维束都具有单独可编程张力控制功能和牵丝辅助装置,用以支持单独纤维束铺放并保持精确的张力。

一般地说,纤维束张力不超过0.23kg,过高的张力将会导致在凹轮廓区铺放时产生桥接(bridge-over)现象。

2.剪切装置 

在纤维束铺放过程中,任意纤维束可被切断和调用,从而允许通过增减纤维束数目来实现改变铺放的纤维束带宽度和构成形式。

通过调整纤维束带宽度,就可以控制相邻带间裂缝或相互交覆盖区的大小。

3.夹紧装置

在纤维束铺放过程中,任意一纤维束都具有一定张力,当需进行剪切时须夹住後面之纤维束,以防止其回收而导致无法控制。

通常,当要求切断纤维束前执行这种夹紧操作,而当要求重送时松开夹紧装置。

4.重送装置

铺放过程中,需要对已切断的纤维束重新铺放到构件上时则通过重送装置实现。

5.滚压装置

通过滚压辊压实铺放的纤维束带并有效实现层间粘连且紧贴工件型面,其压紧压力通常也是为可编程的,或为可设置的。

6.加热装置

该装置用於控制纤维束的粘度,确保滚压装置能有效压紧铺放的纤维束紧贴模具或工件型面,并挤走铺层间空气。

典型AFP可控加热装置可控制纤维束升温(27~32℃)产生必要的粘度,并在滚压辊作用下能良好地粘贴在工件型面上;

而在这之前,纤维束温度保持在不高於21℃而处於低粘度或基本上无粘性状态,确保控制纤维束能容易地从经轴架的线轴中抽出和传送到铺放头。

nextpage

AFP机床在工业中的应用

1.Cincinnati公司VIPER系列机床

1985年,波音公司研发了第一台AFP样机,其设计的铺丝头已基本上解决了预浸料、切断与重送以及集束压实等技术问题。

此後,Cincinnati机床公司在1989年推出了第一台商品化AFP机床VIPER1200,被用於V-22Osprey军用飞机4.21m长的复材後机身结构件的制造,见图4。

图4CincinnatiVIPER1200AFP机床用於铺放V-22Osprey後机身

原先该後机身是被分成9段後采用人工铺放的,改用AFP机床自动铺放时,被作为单一的通过AFP铺放加工的整体构件,节省了扣件34%,减少修整和装配劳力53%。

通过纤维铺放设计优化,纤维束浪费率减少了90%。

应用VIPER1200AFP机床进行F/A-18E/F超级大黄蜂军机的复材机身蒙皮的铺放,和采用人工纤维铺放方式相比,节省劳力38%。

而应用VIPER1200AFP机床铺放的采用蜂窝夹心结构的小型商务机PremierI全复材机身,仅仅包括两个要加工的零件:

从雷达天线舱壁伸出部分到後承力舱的前机身壳体,长8米;

和从後承力舱到尾锥的後机身壳体,长约5米。

整个复材机身重量不超过273kg。

若采用金属材料制造机身重为454kg(减重40%),且组成的零件多於3000个。

同时,采用AFP机床自动铺放和人工铺放方式相比,复材纤维束浪费率将减少90%。

显然,对重达273kg的构件而言,复材纤维束费用的节约将是相当可观的。

随着铺放制造的飞机复材整体构件尺寸越来越大,为满足不同航空用户需求,Cincinnati机床公司先後开发了AFP系列产品VIPER1200/3000/4000/6000设备。

图5(a)为英法德三国合作的欧洲先进复材发展研究项目中,BAE公司应用小型AFP机床VIPER1200制造的长4.5m、最宽处达2m筒形预浸料碳纤维全复材机身段(FUBACOMP),该构件是由Dassault公司设计的。

a.筒形全复材机身构件b.A380後机身构件

图5CincinnatiVIPER系列AFP机床加工机身构件

而使用中型AFP机床VIPER3000,能够铺放生产大型商用飞机A380的CFRP复材尾锥构件,构件长4.77m,锥体两端直径分别为2.55m和400mm。

图5(b)则为应用VIPER3000机床生产的新A380客机非主承力复材後机身构件,其截面积达5770×

5800mm。

Cincinnati最新VIPER6000大型AFP机床铺丝头可装载32束12.7mm宽纤维束,纤维束带宽达406mm,能铺放直径6.5m、长达17m的复材构件,控制转动心轴重量可达86.3t。

据报道,波音公司大型787“梦想”客机共设计有9个机身段构件,其中5个采用的是复材整体构件设计制造。

Vought公司为波音787客机制造23%的机身部件,包括5.8×

7m的47段机身和4.3×

4.6m的48段机身复材构件,使用日本东丽的3900系列碳纤维/环氧树脂预浸料复材,就是在Cincinnati大型AFP机床VIPER6000上进行自动铺放制造的。

48段机身复材构件所铺层数,最薄处12层,最厚处多达100层。

2.Ingersoll公司AFP机床

美国Spirit(斯匹里特)公司在堪萨斯州的威奇托工厂生产波音787的41段全复材前机身,为复杂外形轮廓的筒形整体构件(见图6),使用Ingersoll提供的AFP机床进行制造。

经AFP设备铺放完成後的复材预构件在21.3米×

9.1米的热压罐中固化,形成高韧可靠和高强度的整体复材构件。

图6波音78741段前机身加工由Ingersoll卧式AFP机床完成

Ingersoll公司还生产提供带芯模旋转轴的卧式AFP机床,配置GEFanuc多坐标CNC控制系统和复材编程系统(CPS,CompositeProgrammingSystem),可用於飞机承力货舱、油箱和锥体类等复杂结构件、发动机整流罩、承载的整流和起落架吊舱片等结构件的铺放制造。

该AFP机床,工作区设计为(4800-6000)×

(14000-22800)mm,工作进给速度30m/min,快速移动速度达55m/min;

定位精度0.05mm,全长0.4mm,重复定位精度0.025mm,直线轴加速度500mm/s2。

波音787客机的8.5m长的44段机身以及10m长的46段机身由意大利Alenia(阿莱尼亚)公司制造,装备有Ingersoll公司的最新一代AFPMongooseH3机床,应用32束12.7mm宽纤维束的铺丝头,铺放速度和切割速度达30m/min,生产率可达720m2/hr碳纤维。

Ingersoll公司还提供带芯模工作台的立式龙门结构的AFP机床。

至2005年,Ingersoll公司已向航空飞机工业提供了11台AFP机床,按计划到2009年底还会再提供8台AFP机床。

而该公司推出的最新一代AFP机床铺放速度可达60m/min,切割速度50m/min。

美国洛克希德?

马丁空间系统公司(LockheedMartinSpaceSystems)也购置有多台Ingersoll公司AFP机床用於复材整体构件的铺放制造。

3.MTORRES公司AFP机床 

波音787客机的43段机身由日本川崎重工(KHI:

KawasakiHeavyIndustries)制造,使用西班牙MTORRES公司的新一代AFP机床,见图7。

图7MTORRES公司的新一代铺丝机

在西班牙的马德里复合材料研究中心也安装有一台同样的新一代AFP机床。

MTORRES公司的新一代AFP机床使用32束任选3.2/6.4/12.7mm宽纤维束的铺丝头,铺丝头由铝合金材制成,尺寸小,惯量小,铺放速度可达61m/min,机床线性轴加速度达3g,最高铺放生产率达

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人文社科 > 法律资料

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1