浮阀塔泡罩塔筛板塔优缺点及结构原理Word文档下载推荐.docx
《浮阀塔泡罩塔筛板塔优缺点及结构原理Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《浮阀塔泡罩塔筛板塔优缺点及结构原理Word文档下载推荐.docx(14页珍藏版)》请在冰豆网上搜索。
A-p2f泡罩塔板是工业上应用最
早的塔板,它主要由升气管及泡罩构成。
泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。
泡罩有f80、f100、f150mm三种尺寸,可根据塔径的大小选择。
泡罩的下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。
泡罩在塔板上为正三角形排列。
操作时,液体横向流过塔板,靠溢流堰保持板上有一定厚度的液层,齿缝浸没于液层之中而形成液封。
升气管的顶部应高于泡罩齿缝的上沿,以防止液体从中漏下。
上升气体通过齿缝进入液层时,被分散成许多细小的气泡或流股,在板上形成鼓泡层,为气液两相的传热和传质提供大量的界面I0Z8b.G;
p3d泡罩塔板的优点是操作弹性较大,塔板不易堵塞;
缺点是结构复杂、造价高,板上液层厚,塔板压降大,生产能力及板效率较低。
泡罩塔板已逐渐被筛板、浮阀塔板所取代,在新建塔设备中已很少采用。
浮阀塔板具有泡罩塔板和筛孔塔板的优点,应用广泛。
浮阀的类型很多,国内常用的有F1型、V-4型及T型等。
浮阀塔板的优点是结构简单、造价低,生产能力大,操作弹性大,塔板效率较高。
其缺点是处理易结焦、高粘度的物料时,阀片易与塔板粘结;
在操作过程中有时会发生阀片脱落或卡死等现象,使塔板效率和操作弹性下降。
浮阀塔结构原理
浮阀塔F-型(国外通称V-型)是用钢板冲压而成的圆形阀片,浮阀塔F-型下面有三条阀腿,把三条阀腿装入塔板的阀孔之后,用工具将腿下的阀脚扭转90°
,则浮
阀就被限制在浮孔内只能上下运动而不能脱离塔板。
当气速较大时,浮阀塔F-型浮阀被吹起,达到最大开度;
当气速较小时,气体的动压头小于浮阀自重,于是
浮阀塔F-型浮阀下落,浮阀周边上三个朝下倾斜的定距片与塔板接触,此时幵度最小。
定距片的作用是保证最小气速时还有一定的幵度,使气体与浮阀塔F-型塔
板上液体能均匀地鼓泡,避免浮阀与塔板粘住。
浮阀塔F-型浮阀的幵度随塔内气
相负荷大小自动调节,可以增大传质的效果,减少雾沫夹带。
结构原理如下图:
分析一下图中所示结构,尤其是图中椭圆圈出的部分,若是能帮在下作出立体模型,那将感激不尽
塔盘的形式目前主要有泡罩式、浮阀式、立体传质式、筛板式、舌形塔、浮动舌形式和浮动喷射式等。
请讨论:
1、比较各种塔盘的传质效率
2、各种塔盘的产生背景
浮阀式结构简单弹性好、制造安装容易一般都有采用
浮动舌形式也可以
筛板类型加工简单但是弹性太小。
泡罩式结构复杂塔盘重量大
填料塔的作用是起到吸收作用,是化工、石油化工和炼油生产中最重要的设备之一。
以下讲一下填料塔的结构特点:
填料塔是以塔内的填料作为气液两相间接触构件的传质设备。
填料塔的
塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
填料的上方安装填料压板,以防被上升气流吹动。
液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小
直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。
填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散
当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近
的液流量逐渐增大,这种现象称为壁流。
壁流效应造成气液两相在填料层中分布
不均,从而使传质效率下降。
因此,当填料层较高时,需要进行分段,中间设置
再分布装置。
液体再分布装置包括液体收集器和液体再分布器两部分,上层填料
流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。
填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大
等优点。
填料塔也有一些不足之处,如填料造价高;
当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;
不能直接用于有悬浮物或容易聚合的物料;
对侧线进料和出料等复杂精馏不太适合等。
填料的分类
填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。
1.散装填料
散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。
散装填料根据结构特点不同,又可
分为环形填料、鞍形填料、环鞍形填料及球形填料等。
现介绍几种较为典型的散装填料:
拉西环鲍尔环阶梯环弧鞍填料矩鞍填料金属环矩鞍填料球形填料
(1)拉西环填料于1914年由拉西(F.Rashching)发明,为外径与高度相等的圆环。
拉西环填料的气液分布较差,传质效率低,阻力大,通量小,目前工业上已较少应用。
(2)鲍尔环填料是对拉西环的改进,在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭。
鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气流阻力小,液体分布均匀。
与拉西环相比,鲍尔环的气体通量可增加50%以上,传质效率提高30%左右。
鲍尔环是一种应用较广的填料。
(3)阶梯环填料是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半并在一端增加了一个锥形翻边。
由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力。
锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高。
阶梯环的综合性能优于鲍尔环,成为目前所使用的环形填料中最为优良的一种
4)弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料
制成。
弧鞍填料的特点是表面全部敞开,不分内外,液体在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。
其缺点是易发生套叠,致使一部分填料表面被重合,使传质效率降低。
弧鞍填料强度较差,容破碎,工业生产中应用不多。
(5)矩鞍填料将弧鞍填料两端的弧形面改为矩形面,且两面大小不等,即成为矩鞍填料。
矩鞍填料堆积时不会套叠,液体分布较均匀。
矩鞍填料一般采用瓷质材料制成,其性能优于拉西环。
目前,国内绝大多数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。
(6)金属环矩鞍填料环矩鞍填料(国外称为Intalox)是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料。
环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环,在散装填料中应用较多。
(7)球形填料一般采用塑料注塑而成,其结构有多种。
球形填料的特点是球体为空心,可以允许气体、液体从其内部通过。
由于球体结构的对称性,填料装填密度均匀,不易产生空穴和架桥,所以气液分散性能好。
球形填料一般只适用于某些特定的场合,工程上应用较少。
除上述几种较典型的散装填料外,近年来不断有构型独特的新型填料开发出来,如共轭环填料、海尔环填料、纳特环填料等。
工业上常用的散装填料的特性数据可查有关手册。
2.规整填料
规整填料是按一定的几何构形排列,整齐堆砌的填料。
规整填料种类很多,根据其几何结构可分为格栅填料、波纹填料、脉冲填料等。
(1)格栅填料是以条状单元体经一定规则组合而成的,具有多种结构形式。
工业上应用最早的格栅填料为木格栅填料。
目前应用较为普遍的有格里奇格栅填料、网孔格栅填料、蜂窝格栅填料等,其中以格里奇格栅填料最具代表性。
格栅填料的比表面积较低,主要用于要求压降小、负荷大及防堵等场合。
(2)波纹填料目前工业上应用的规整填料绝大部分为波纹填料,它是由许多波纹薄板组成的圆盘状填料,波纹与塔轴的倾角有30°
和45°
两种,组装时
相邻两波纹板反向靠叠。
各盘填料垂直装于塔内,相邻的两盘填料间交错90°
排
列。
波纹填料按结构可分为网波纹填料和板波纹填料两大类,其材质又有金属、塑料和陶瓷等之分。
金属丝网波纹填料是网波纹填料的主要形式,它是由金属丝网制成的。
金属丝网波纹填料的压降低,分离效率很高,特别适用于精密精馏及真空精馏装置,为难分离物系、热敏性物系的精馏提供了有效的手段。
尽管其造价高,但因其性能优良仍得到了广泛的应用。
金属板波纹填料是板波纹填料的一种主要形式。
该填料的波纹板片上冲
压有许多f5mm左右的小孔,可起到粗分配板片上的液体、加强横向混合的作用波纹板片上轧成细小沟纹,可起到细分配板片上的液体、增强表面润湿性能的作用。
金属孔板波纹填料强度高,耐腐蚀性强,特别适用于大直径塔及气液负荷较大的场合。
金属压延孔板波纹填料是另一种有代表性的板波纹填料。
它与金属孔板波纹填料的主要区别在于板片表面不是冲压孔,而是刺孔,用辗轧方式在板片上辗出很密的孔径为0.4〜0.5mm小刺孔。
其分离能力类似于网波纹填料,但抗堵能力比网波纹填料强,并且价格便宜,应用较为广泛。
波纹填料的优点是结构紧凑,阻力小,传质效率高,处理能力大,比表面积大(常用的有125、150、250、350、500、700等几种)。
波纹填料的缺点是不适于处理粘度大、易聚合或有悬浮物的物料,且装卸、清理困难,造价高。
(3)脉冲填料是由带缩颈的中空棱柱形个体,按一定方式拼装而成的一种规整填料。
脉冲填料组装后,会形成带缩颈的多孔棱形通道,其纵面流道交替收缩和扩大,气液两相通过时产生强烈的湍动。
在缩颈段,气速最高,湍动剧烈,从而强化传质。
在扩大段,气速减到最小,实现两相的分离。
流道收缩、扩大的交替重复,实现了“脉冲”传质过程。
脉冲填料的特点是处理量大,压降小,是真空精馏的理想填料。
因其优良的液体分布性能使放大效应减少,故特别适用于大塔径的场合。
1)塔内气、液两相异常流动
a.液泛
气、液两相在塔内总体上呈逆行流动,并在塔板上维持适宜的液层高度,气、液两相适宜接触状态,进行接触传质。
如果由于某种原因,使得气、液两相流动不畅,使板上液层迅速积累,以致充满整个空间,破坏塔的正常操作,称此现象为液泛,如图6.9.2所示。
根据液泛发生原因不同,可分为两种不同性质的液泛。
•过量雾沫夹带液泛
雾沫夹带造成返混,降低塔板效率。
少量夹带不可避免,只有过量的夹带才能引起严重后果。
液沫夹带有两种原因引起,其一是气相在液层中鼓泡,气泡破裂,将雾沫弹溅至上一层塔板。
可见,增加板间距可减少夹带量。
另一种原因是气相运动是喷射状,将液体分散并可携带一部分液沫流动,此时增加板间距不会奏效。
随气速增大,使塔板阻力增大,上层塔板上液层增厚,塔板液流不畅,液层迅速积累,以致充满整个空间,即液泛。
由此原因诱发的液泛为液沫夹带液泛。
开始发生液泛时的气速称之为液泛气速。
图6.9.2塔板液泛图6.9.3塔板漏液
降液管液泛当塔内气、液两相流量较大