流体通过颗粒层的流动文档格式.docx

上传人:b****2 文档编号:13534783 上传时间:2022-10-11 格式:DOCX 页数:25 大小:851.17KB
下载 相关 举报
流体通过颗粒层的流动文档格式.docx_第1页
第1页 / 共25页
流体通过颗粒层的流动文档格式.docx_第2页
第2页 / 共25页
流体通过颗粒层的流动文档格式.docx_第3页
第3页 / 共25页
流体通过颗粒层的流动文档格式.docx_第4页
第4页 / 共25页
流体通过颗粒层的流动文档格式.docx_第5页
第5页 / 共25页
点击查看更多>>
下载资源
资源描述

流体通过颗粒层的流动文档格式.docx

《流体通过颗粒层的流动文档格式.docx》由会员分享,可在线阅读,更多相关《流体通过颗粒层的流动文档格式.docx(25页珍藏版)》请在冰豆网上搜索。

流体通过颗粒层的流动文档格式.docx

假设床层颗粒是均匀堆积(即认为床层是各向同性的)。

想象用力从床层四周往中间均匀压紧,把颗粒都压到中间直径为长为L的圆柱中(圆柱内设有空隙)。

=1-=1-

=1-=1-

所以对颗粒均匀堆积的床层(各向同性床层),在数值上=A。

(3)床层比表面

=,颗粒比表面=

取V=1床层考虑,=,==

所以=(1-)此式是近似的,在忽略床层中固颗粒相互接触而彼此覆盖使裸露的颗粒表面积减少时成立。

4.3流体通过固定床的压降

固定床中颗粒间存在着网络状的空隙形成许多可供流体通过的细小通道。

这些通道是曲折而且互相交联,其截面大小和形状又是很不规则的。

流体通过如此复杂的通道时的阻力(压降)自然难以进行理论计算,必须依靠实验来解决问题。

现在介绍一种实验规划方法——数学模型法。

4.3.1颗粒床层的简化模型

(1)床层的简化物理模型

在固定床内大量细小而密集的固体颗粒对流体的运动形成了很大的阻力。

此阻力一方面可使流体沿床截面的速度分布变的相当均匀,另一方面却在床层两端造成很大压降。

工程上感兴趣的主要是床层的压降。

为解决流体流过固定床层的压降计算问题,我们必须把图(a)所示的难以用数学方程描述的颗粒层内的实际流动过程进行大幅度的简化,使之可以用数学方程式加以描述。

经简化而得到的等效流动过程称之为原真实流动过程的物理模型。

那么如何进行简化可以得到等效流动过程呢?

经过分析我们知道,单位体积床层所具有的颗粒表面积(即床层比表面积)和床层空隙率对流动阻力有决定性的作用。

为得到等效流动过程,简化后的物理模型中的和应与真空模型的和相等,为此许多研究者将床层中的不规则通道简化成长度为的一组平行细管(图(b)),并规定:

①细管的内表面积等于床层颗粒的全部表面;

②细管的全部流动空间等于颗粒床层的空隙体积。

根据上述假定,可求得这些虚拟细管的当量直径

=4=4

=4=4=

按此简化模型,流体通过固定床的压降等同于流体通过一组当量直径为、长度为的细管的压降。

(2)流体压降的数学模型

上述简化的物理模型,已将流体通过具有复杂几何边界(网络状孔道)的床层的压降简化为通过均匀圆管的压降,故可用第一章流体流过圆管的阻力损失作出如下的数学描述

式中为流体在细管内的流速,由于细管内的流动过程等效与原真实流动过程,故可取为实际填充床中颗粒空隙间的流速。

它与表现流速u的关系为:

体积流量=

所以

单位床层高度的虚拟压强降

=

细管长度

将其并入中得()

(4-22)

式中为单位床层高度的虚拟压强差,当床层不高,重力的影响可以忽略时,

为简化起见,以后在本章中均称为压降,或以后出现的公式或干脆用表示。

式(4-22)即为流体通过固定床压降的数学模型,其中包括一个未知的待定系数。

称为模型参数,就其物理意义而言,也可称为固定床的流动摩擦系数。

(3)模型的检验和模型参数的估值

上述床层的简化处理只是一种假定,模型正确与否必须经过实验检验,其中的模型参数亦必须由实验测定。

康采尼(Kozeny)对此进行了实验研究,发现在流速教低,床层雷诺数时,实验数据能较好地符合下式

(4-23)

式中称为康采尼常数,其值为5.0。

对于不同的床层,的可能误差不超过10%,这表明上述的简化模型确实是实际过程的合理简化。

把式(4-23)代入式(4-22)得

(4-25)

上式称为康采尼方程,它仅适用于低累诺数()范围,对于本章后面要重点讨论的过滤操作此式成立。

而对于较宽的范围,可用教材p164式(4-26)~式(4-28)的欧根(Ergun)方程描述。

(对非球型颗粒,以代替欧根公式中的,称为形状系数,其意义见p157,称为体积当量直径,其定义为p156(4-4)。

还有定义请自学。

从康采尼方程或欧根方程可看出,影响床层压降的变量有三类:

①操作变量u;

②流体物性;

③床层特性和a

在上述因素中,影响最大的是空隙率,在其他条件不变时,若从0.5降至0.4,从式(4-25)中不难算出将增加2.8倍!

另一方面又随装填料情况而变,同一种物料用同样方式装填,其也未必能够重复。

因此,在设计计算时,的选取应当十分慎重。

(4)因次分析法和数学模型法的比较

由于化工过程的复杂性,在大多数情况下均难以采用数学解析法求解,而必须依靠实验。

为了以尽量少的实验得到可靠和明确的结果,任何实验都必须在理论的指导下进行。

指导实验的理论包括两个方面,一是化学工程学科本身的基本规律和基本观点,二是正确的实验方法论。

到目前为止,我们已学过的指导实验的理论有两个,一个是因次分析法,另一个就是前面介绍的数学模型法。

这两个理论的主要特点我们要简要回顾总结一下。

因次分析法的步骤:

①找出过程的影响因素(此步是因次分析法成败的关键,若遗漏某个重要的影响因素将得不到可靠的结果,若引进无关的物理量则可能得到没有意义的数群。

找影响因素一般是靠经验及若干实验结果分析);

②将影响过程的各个物理量的因次抽出进行分析,整理成若干个无因次数群(数群的数目少于自变量的数目,使实验工作量减少);

③通过实验确定各数群之间的定量关系(因次分析只考虑物理量的因次,没有考虑物理量的数值部分,故各数群的指数及数群前的系数仍需通过实验确定。

这样得到的各数群之间的关系式只能反映过程的外部联系,而对过程的内部规律不甚了解,如同“黑箱”。

然而,这正是因次分析法的一大特点,它使用因次分析法成为对各种研究对象原则上皆适用的一般方法。

对某些复杂过程,哪怕研究者对其内部规律不甚了解,照样可以进行研究);

数学模型法的步骤(与因次分析法相反,数学模型立足于对所有研究过程的深刻理解):

①将复杂的真实过程简化成易于用数学方程式描述的物理模型(对过程的合理简化是数学模型法成败的关键);

②对所得的物理模型进行数学描述即建立数学模型(要简话得到一个足够简单又可用数学方程式表示且不失真的物理模型,必须对过程的内在规律特别是过程的特殊性有着深刻的理解。

这一点通过前面导出颗粒床层的数学模型,同学们应该有深刻的体会);

③通过实验对数学模型的合理性进行检验并测定模型参数(数学模型法不能摆脱实验,最后还要通过实验解决问题。

但是,在因次分析法中实验的目的是为了搜索寻找各数群之间的函数关系;

而在数学模型法中。

实验的目的是为了检验模型的合理性并测定为数较少的模型参数。

显然,检验性的实验要比搜索性的实验简易得多)。

有以上所述不难看出,在两种实验规划方法中,数学模型法更具有科学性。

但是数学模型法立足于对所研究过程的深刻理解,没有深刻的理解就不能作出恰如其分的简化,此法便不能使用。

因此,数学模型法的发展并不意味着因次分析法可以完全抛弃;

相反两种方法应同时并存,各有所用,相辅相成。

4.4过滤原理及设备

4.4.1过滤原理

(1)过滤是利用可以让液体通过而不能让固体通过的多孔介质,将悬浮液中的固、液两相

加以分离的操作。

(2)过滤方式

①滤饼过滤

(见图4-7a)过滤时悬浮液置于过滤介质的一侧。

过滤介质常用多孔织物,其网孔尺寸未必一定须小于被截留的颗粒直径。

在过滤操作开始阶段,会有部分颗粒进入过滤介质网孔中发生架桥现象(图4-7b),也有少量颗粒穿过介质而混与滤液中。

随着滤渣的逐步堆积,在介质上形成一个滤渣层,称为滤饼。

不断增厚的滤饼才是真正有效的过滤介质,而穿过滤饼的液体则变为清净的滤液。

通常,在操作开始阶段所得到滤液是浑浊的,须经过滤饼形成之后返回重滤。

②深层过滤

颗粒尺寸比介质孔道小的多,孔道弯曲细长,颗粒进入孔道后容易被截留。

同时由于流体流过时所引起的挤压和冲撞作用。

颗粒紧附在孔道的壁面上。

介质表面无滤饼形成,过滤是在介质内部进行的。

(3)过滤介质

①织物介质:

即棉、毛、麻或各种合成材料制成的织物,也称为滤布。

②粒状介质:

细纱、木炭、碎石等。

③多孔固体介质(一般要能够再生的才行):

多孔陶瓷、多孔塑料、多孔玻璃等。

(4)助滤剂

若悬浮液中颗粒过于细小将会使通道堵塞,或颗粒受压后变形较大,滤饼的孔隙率大为减小。

造成过滤困难,往往加助滤剂以增加过滤速率。

助滤剂的加法有两种:

①直接以一定比例加到滤浆中一起过滤。

若过滤的目的是回收固体物此法便不适用。

②将助滤剂预先涂在滤布上,然后再进行过滤。

此法称为预涂。

助滤剂是一种坚硬而形状不规则的小颗粒,能形成结构疏松而且几乎是不可压缩的滤饼。

常用作助滤剂的物质有:

硅藻土、珍珠岩、炭粉、石棉粉等。

4.4.2过滤设备

4.2.2.1板框过滤机

(1)结构与工作原理

由多块带凸凹纹路的滤板和滤框交替排列于机架而构成。

板和框一般制成方形,其角端均开有圆孔,这样板、框装合,压紧后即构成供滤浆、滤液或洗涤液流动的通道。

框的两侧覆以滤布,空框与滤布围成了容纳滤浆和滤饼的空间。

板和框的结构如图所示。

悬浮液从框右上角的通道1(位于框内)进入滤框,固体颗粒被截留在框内形成滤饼,滤液穿过滤饼和滤布到达两侧的板,经板面从板的左下角旋塞排出。

待框内充满滤饼,即停止过滤。

如果滤饼需要洗涤,先关闭洗涤板下方的旋塞,洗液从洗板左上角的通道2(位于框内)进入,依次穿过滤布、滤饼、滤布,到达非洗涤板,从其下角的旋塞排出。

如果将非洗涤板编号为1、框为2、洗涤板为3,则板框的组合方式服从1—2—3—2——1—2—3之规律。

组装之后的过滤和洗涤原理如图所示。

滤液的排出方式有明流和暗流之分,若滤液经由每块板底部旋塞直接排出,则称为明流(显然,以上讨论以明流为例);

若滤液不宜暴露于空气中,则需要将各板流出的滤液汇集于总管后送走,称为暗流。

说明:

①板框压滤机的操作是间歇的,每个操作循环由装合、过滤、洗涤、卸渣、整理五个阶段组成。

(详见教材);

②上面介绍的洗涤方法称为横穿洗涤法,其洗涤面积为过滤面积的1/2,洗涤液穿过的滤饼厚度为过滤终了时滤液穿过厚度的2倍。

若采用置换洗涤法,则洗涤液的行程和洗涤面积与滤液完全相同。

(2)主要优缺点

板框压滤机构造简单,过滤面积大而占地省,过滤压力高,便于用耐腐蚀材料制造,操作灵活,过滤面积可根据产生任务调节。

主要缺点是间歇操作,劳动强度大,产生效率低。

4.2.2.2叶滤机

叶滤机由许多滤叶组成。

滤叶是由金属多孔板或多孔网制造的扁平框架,内有空间,外包滤布,将滤叶装在密闭的机壳内,为滤浆所浸没。

滤浆中的液体在压力作用下穿过滤布进入滤叶内部,成为滤液后从其一端排出。

过滤完毕,机壳内改充清水,使水循着与滤液相同的路径通过滤饼进行洗涤,故为置换洗涤。

最后,滤饼可用振动器使其脱落,或用压缩空气将其吹下。

滤叶可以水平放置也可以垂直放置,滤浆可用泵压入也可用真空泵抽入。

其示意图如下:

叶滤机也是间歇操作设备。

它具有过滤推动力大,过滤面积大,滤饼洗涤较充分等优点。

其产生能力比压滤机还大,而且机械化程度高,劳动力较省。

缺点是构造较为复杂,造价较高,粒度差别较大的颗粒可能分别聚集于不同的高度,故洗涤不均匀。

4.2.2.3转筒过滤机

设备的主体

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 自然科学 > 数学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1