常用运放电路及其各类比较器电路解读Word格式文档下载.docx
《常用运放电路及其各类比较器电路解读Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《常用运放电路及其各类比较器电路解读Word格式文档下载.docx(12页珍藏版)》请在冰豆网上搜索。
2号图:
反相输入放大电路如图1所示,信号电压通过电阻R1加至运放的反相输入端,输出电压vo通过反馈电阻Rf反馈到运放的反相输入端,构成电压并联负反馈放大电路。
R¢
为平衡电阻应满足R¢
=R1//Rf。
利用虚短和虚断的概念进行分析,vI=0,vN=0,iI=0,则
即
∴
该电路实现反相比例运算。
反相放大电路有如下特点
1.运放两个输入端电压相等并等于0,故没有共模输入信号,这样对运放的共模抑制比没有特殊要求。
2.vN=vP,而vP=0,反相端N没有真正接地,故称虚地点。
3.电路在深度负反馈条件下,电路的输入电阻为R1,输出电阻近似为零。
运算放大器减法电路原理:
图为运放减法电路4y6838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸
由e1输入的信号,放大倍数为R3/R1,并与输出端e0相位相反,所以4y6838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸
4y6838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸
由e2输入的信号,放大倍数为
4y6838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸
与输出端e0相位相,所以4y6838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号-各种图纸
当R1=R2=R3=R4时
e0=e2-e1
加法运算放大器电路:
加法运算放大器电路包含有反相加法电路和同相加法电路.
同相加法电路:
由LF155组成。
三个输入信号同时加到运放同相端,其输入输出电压关系式:
反相加法电路:
由运算放大器lm741
组成。
(lm741中文资料
)
反相加法运算电路为若干个输入信号从集成运放的反相输入端引入,输出信号为它们反相按比例放大的代数和。
电压比较器:
图4(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:
Vout=(1+RF/R1)·
R3/(R2+R3)VA-(RF/R1)VB。
若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。
当R1=R2=0(相当于R1、R2短路),R3=RF=∞(相当于R3、RF开路)时,Vout=∞。
增益成为无穷大,其电路图就形成图4(b)的样子,差分放大器处于开环状态,它就是比较器电路。
实际上,运放处于开环状态时,其增益并非无穷大,而Vout输出是饱和电压,它小于正负电源电压,也不可能是无穷大。
从图4中可以看出,比较器电路就是一个运算放大器电路处于开环状态的差分放大器电路。
同相放大器电路如图5所示。
如果图5中RF=∞,R1=0时,它就变成与图3(b)一样的比较器电路了。
图5中的Vin相当于图3(b)中的VA。
滞回电压比较器:
滞回比较器又称施密特触发器,迟滞比较器。
这种比较器的特点是当输入信号ui逐渐增大或逐渐减小时,它有两个阈值,且不相等,其传输特性具有“滞回”曲线的形状。
滞回比较器也有反相输入和同相输入两种方式。
UR是某一固定电压,改变UR值能改变阈值及回差大小。
以图4(a)所示的反相滞回比较器为例,计算阈值并画出传输特性
仪表放大器电路
目前,仪表放大器电路的实现方法主要分为两大类:
第一类由分立元件组合而成;
另一类由单片集成芯片直接实现。
根据现有元器件,分别以单运放LM741和OP07,集成四运放LM324和单片集成芯片AD620为核心,设计出四种仪表放大器电路方案。
方案1由3个通用型运放LM741组成三运放仪表放大器电路形式,辅以相关的电阻外围电路,加上A1,A2同相输入端的桥式信号输入电路,如图2所示。
图2中的A1~A3分别用LM741替换即可。
电路的工作原理与典型仪表放大器电路完全相同。
方案2由3个精密运放OP07组成,电路结构与原理和图2相同(用3个OP07分别代替图2中的A1~A3)。
方案3以一个四运放集成电路LM324为核心实现,如图3所示。
它的特点是将4个功能独立的运放集成在同一个集成芯片里,这样可以大大减少各运放由于制造工艺不同带来的器件性能差异;
采用统一的电源,有利于电源噪声的降低和电路性能指标的提高,且电路的基本工作原理不变。
图4滞回比较器及其传输特性
(a)反相输入;
(b)同相输入
1,正向过程
正向过程的阈值为
形成电压传输特性的abcd段
2,负向过程
负向过程的阈值为
形成电压传输特性上defa段。
由于它与磁滞回线形状相似,故称之为滞回电压比较器。
利用求阈值的临界条件和叠加原理方法,不难计算出图4(b)所示的同相滞回比较器的两个阈值
两个阈值的差值ΔUTH=UTH1–UTH2称为回差。
由上分析可知,改变R2值可改变回差大小,调整UR可改变UTH1和UTH2,但不影响回差大小。
即滞回比较器的传输特性将平行右移或左移,滞回曲线宽度不变。
图5比较器的波形变换
(a)输入波形;
(b)输出波形
例如,滞回比较器的传输特性和输入电压的波形如图6(a)、(b)所示。
根据传输特性和两个阈值(UTH1=2V,UTH2=–2V),可画出输出电压uo的波形,如图6(c)所示。
从图(c)可见,ui在UTH1与UTH2之间变化,不会引起uo的跳变。
但回差也导致了输出电压的滞后现象,使电平鉴别产生误差。
图6说明滞回比较器抗干扰能力强的图
(a)已知传输特性;
(b)已知ui波形;
(c)根据传输特性和ui波形画出的uo波形
方案4由一个单片集成芯片AD620实现,如图4所示。
它的特点是电路结构简单:
一个AD620,一个增益设置电阻Rg,外加工作电源就可以使电路工作,因此设计效率最高。
图4中电路增益计算公式为:
G=49.4K/Rg+1。
实现仪表放大器电路的四种方案中,都采用4个电阻组成电桥电路的形式,将双端差分输入变为单端的信号源输入。
性能测试主要是从信号源Vs的最大输入和Vs最小输入、电路的最大增益及共模抑制比几方面进行仿真和实际电路性能测试。
测试数据分别见表1和表2。
其中,Vs最大(小)输入是指在给定测试条件下,使电路输出不失真时的信号源最大(小)输入;
最大增益是指在给定测试条件下,使输出不失真时可以实现的电路最大增益值。
共模抑制比由公式KCMRR=20|g|AVd/AVC|(dB)计算得出。
说明:
(1)f为Vs输入信号的频率;
(2)表格中的电压测量数据全部以峰峰值表示;
(3)由于仿真器件原因,实验中用Multisim对方案3的仿真失效,表1中用“-”表示失效数据;
(4)表格中的方案1~4依次分别表示以LM741,OP07,LM324和AD620为核心组成的仪表放大器电路。
由表1和表2可见,仿真性能明显优于实际测试性能。
这是因为仿真电路的性能基本上是由仿真器件的性能和电路的结构形式确定的,没有外界干扰因素,为理想条件下的测试;
而实际测试电路由于受环境干扰因素(如环境温度、空间电磁干扰等)、人为操作因素、实际测试仪器精确度、准确度和量程范围等的限制,使测试条件不够理想,测量结果具有一定的误差。
在实际电路设计过程中,仿真与实际测试各有所长。
一般先通过仿真测试,初步确定电路的结构及器件参数,再通过实际电路测试,改进其具体性能指标及参数设置。
这样,在保证电路功能、性能的前提下,大大提高电路设计的效率。
由表2的实测数据可以看出:
方案2在信号输入范围(即Vs的最大、最小输入)、电路增益、共模抑制比等方面的性能表现为最优。
在价格方面,它比方案1和方案3的成本高一点,但比方案4便宜很多。
因此,在四种方案中,方案2的性价比最高。
方案4除最大增益相对小点,其他性能仅次于方案2,具有电路简单,性能优越,节省设计空间等优点。
成本高是方案4的最大缺点。
方案1和方案3在性能上的差异不大,方案3略优于方案1,且它们同时具有绝对的价格优势,但性能上不如方案2和方案4好。
综合以上分析,方案2和方案4适用于对仪表放大器电路有较高性能要求的场合,方案2性价比最高,方案4简单、高效,但成本高。
方案1和方案3适用于性能要求不高且需要节约成本的场合。
针对具体的电路设计要求,选取不同的方案,以达到最优的资源利用。
电路的设计方案确定以后,在具体的电路设计过程中,要注意以下几个方面:
(1)注意关键元器件的选取,比如对图2所示电路,要注意使运放A1,A2的特性尽可能一致;
选用电阻时,应该使用低温度系数的电阻,以获得尽可能低的漂移;
对R3,R4,R5和R6的选择应尽可能匹配。
(2)要注意在电路中增加各种抗干扰措施,比如在电源的引入端增加电源退耦电容,在信号输入端增加RC低通滤波或在运放A1,A2的反馈回路增加高频消噪电容,在PCB设计中精心布局合理布线,正确处理地线等,以提高电路的抗干扰能力,最大限度地发挥电路的性能。
仪表放大器的特点:
●高共模抑制比
共模抑制比(CMRR)则是差模增益(Ad)与共模增益(Ac)之比,即:
CMRR=20lg|Ad/Ac|dB;
仪表放大器具有很高的共模抑制比,CMRR典型值为70~100dB以上。
●高输入阻抗
要求仪表放大器必须具有极高的输入阻抗,仪表放大器的同相和反相输入端的阻抗都很高而且相互十分平衡,其典型值为109~1012Ω。
●低噪声
由于仪表放大器必须能够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在1kHz条件下,折合到输入端的输入噪声要求小于10nV/Hz.
●低线性误差
输入失调和比例系数误差能通过外部的调整来修正,但是线性误差是器件固有缺陷,它不能由外部调整来消除。
一个高质量的仪表放大器典型的线性误差为0.01%,有的甚至低于0.0001%.
●低失调电压和失调电