噪声背景下的周期信号检测Word文件下载.docx

上传人:b****4 文档编号:13523601 上传时间:2022-10-11 格式:DOCX 页数:10 大小:150.86KB
下载 相关 举报
噪声背景下的周期信号检测Word文件下载.docx_第1页
第1页 / 共10页
噪声背景下的周期信号检测Word文件下载.docx_第2页
第2页 / 共10页
噪声背景下的周期信号检测Word文件下载.docx_第3页
第3页 / 共10页
噪声背景下的周期信号检测Word文件下载.docx_第4页
第4页 / 共10页
噪声背景下的周期信号检测Word文件下载.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

噪声背景下的周期信号检测Word文件下载.docx

《噪声背景下的周期信号检测Word文件下载.docx》由会员分享,可在线阅读,更多相关《噪声背景下的周期信号检测Word文件下载.docx(10页珍藏版)》请在冰豆网上搜索。

噪声背景下的周期信号检测Word文件下载.docx

analysisaboutthisproblem,andthemethodofautocorrelationisadoptedtosolvethisquestion.Tosupport,simulationonMATLABisdonetoobservethediagramoftheautocorrelationfunctionofsignals.Moreover,accordingtothefactwhichsimulationresultsaren’tperfectunderlargenoise,multi-layerautocorrelationisproposed.Hence,periodicsignalscanbedetectedbythewayofautocorrelationunderhighsignal-to-noiseratio,whileinlowratio,multi-layerautocorrelationshouldbeadopted

Keywords:

periodicsignaldetection,noise,autocorrelation

1引言

在噪声背景下检测信号,是通信工程的一个重要课题,也是雷达信号检测的一项重要任务。

例如,雷达接收机接收到的回波信号总是伴随着噪声与干扰,噪声与干扰的存在影响了雷达对是否检测到目标的判断。

当雷达发射周期信号时,遇到目标后雷达将接收到反射回来的周期信号并伴随着噪声与干扰;

当无目标信号检测时,雷达将接收到噪声与干扰。

雷达根据是否接收到周期信号来判断是否检测到目标。

本文就针对该问题进行理论分析和实际仿真,给出信号检测的方法。

2研究问题

设为雷达接收机接收到的信号,无目标信号反射时,雷达将接收到噪声与干扰,此时,

1

当雷达发射周期信号时,遇到目标后雷达将接收到反射回来的周期信号并伴随着噪声和干扰,此时

2

假设为周期性的随机信号,为非周期噪声,记代表的随机过程为、代表的随机过程为,并假设与为相互独立的遍历性随机过程。

3理论分析

由和的遍历性可知,

3

4

5

6

则在无目标信号反射时,

7

在有目标信号反射时,

8

又随机过程与相互独立,根据以上各式,得到:

9

式子中,只有具有周期性,是直流分量,只在时有明显冲激,其他时刻幅值很小。

例如,假设,其中为随机变量,为高斯白噪声,设功率为P,此时

10

11

12

因此,在信噪比S/N较大的情况下,相对较小,根据接收信号的自相关函数是否具有明显的周期分量就可以判断是否检测到目标;

而在信噪比S/N较低的情况下,不可忽略,自相关函数将不能体现其周期分量,后面会针对该问题进行详细分析和解决。

4系统框图及仿真

仿真结果:

S/N=10dB

S/N=3dB

S/N=0dB

S/N=-3dB

S/N=-10dB

由上述仿真结果可知,在S/N>

=3dB的条件下,可通过自相关函数和功率谱检测出周期信号,而在S/N<

=0dB时,无法通过自相关函数和功率谱判断是否含有周期信号,因此需要别的办法来进行分析判定。

附代码:

functionrandomsignal(p)

S/N=p

t=0:

0.01:

10;

a=10;

w=1;

phase=rand

(1);

s=a*sin(100*w*t+phase);

;

周期信号

n=wgn(1,1001,0.5*a*a/p);

高斯白噪声

y=s+n;

subplot(221);

plot(t,y);

title('

信号波形'

);

subplot(222);

plot(t,abs(fft(y)));

信号频谱'

subplot(223);

m=0:

2000;

plot(m,xcorr(y));

自相关函数'

subplot(224);

plot(m,abs(fft(xcorr(y))));

功率谱密度'

);

5针对强噪声下周期信号检测的改进办法

5.1多重相关法

前面的自相关法是利用信号的周期性,以及信号和噪声相互独立,来对周期信号进行检测,但在信噪比较弱的情况下,情况就会不理想,而多重自相关法[1]在传统自相关的基础上,对信号的自相关函数再做多次自相关,信号经过相关运算后,信噪比会有所增加,但改变是有限的。

在上面的仿真程序的基础上,进一步改进,做出S/N=0dB和S/N=-3dB的多次相关的结果。

仿真结果:

通过上述仿真图像可知,在S/N=0dB、-3dB的情况下,使用多重相关可检测出周期信号的存在。

而一重相关并不能在信噪比低于3dB的情况下检测出周期信号。

因此多重相关确实能降低对信噪比的要求,从而在强噪声下能更准确的判断周期信号是否存在。

functionradsignal2(p)

p=S/N

y1=xcorr(y);

自相关函数

plot(m,y1);

m2=0:

4000;

y2=xcorr(y1);

plot(m2,y2);

二次相关'

m3=0:

8000;

y3=xcorr(y2);

plot(m3,y3);

三次相关'

m4=0:

16000;

plot(m4,xcorr(y3));

四次相关'

6.2随机共振方法

除了传统的自相关检测法、多重相关法,随机共振方法[2]是从另一种思路来进行微弱信号检测。

多重相关法主要是通过多次相关运算提高信噪比,但也是受原始信噪比限制的,而随机共振是描述非线性系统与输入信号和噪声存在某种匹配时,噪声能量会向信号能量转移,使输出信噪比大大提高。

由于这部分和随机信号分析的联系不大,所以在这里不加赘述。

7结论

通过对噪声背景下的周期信号检测这个问题进行理论分析,首先提出自相关函数法,给出了系统框图以及实际MATLAB仿真。

通过对仿真结果的分析,进而提出改善的多重相关法和随机共振法,完成了本次研究性课题的学习。

除了文中提到的方法外,在信号检测领域,基于非线性理论的检测法有很多,例如高阶谱分析、神经网络、经验模式分解、混沌理论等[3]。

参考文献

[1]杨新峰,杨迎春,苑秉成等.强噪声背景下微弱信号检测方法研究[J].舰船电子工程,2005,25(6):

123-125.DOI:

10.3969/j.issn.1627-9730.2005.06.034.

[2]马中存,张永祥.随机共振方法在微弱周期信号检测中的应用[J].船海工程,2010,39(5):

99-101.DOI:

10.3963/j.issn.1671-7953.2010.05.028.

[3]夏均忠,刘远宏,冷永刚等.微弱信号检测方法的现状分析[J].噪声与振动控制,2011,31(3):

156-161.DOI:

10.3969/j.issn.1006-1355-2011.03.037.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1