新版人教版七年级数学下册教案全册Word下载.docx

上传人:b****1 文档编号:13510232 上传时间:2022-10-11 格式:DOCX 页数:197 大小:2.56MB
下载 相关 举报
新版人教版七年级数学下册教案全册Word下载.docx_第1页
第1页 / 共197页
新版人教版七年级数学下册教案全册Word下载.docx_第2页
第2页 / 共197页
新版人教版七年级数学下册教案全册Word下载.docx_第3页
第3页 / 共197页
新版人教版七年级数学下册教案全册Word下载.docx_第4页
第4页 / 共197页
新版人教版七年级数学下册教案全册Word下载.docx_第5页
第5页 / 共197页
点击查看更多>>
下载资源
资源描述

新版人教版七年级数学下册教案全册Word下载.docx

《新版人教版七年级数学下册教案全册Word下载.docx》由会员分享,可在线阅读,更多相关《新版人教版七年级数学下册教案全册Word下载.docx(197页珍藏版)》请在冰豆网上搜索。

新版人教版七年级数学下册教案全册Word下载.docx

剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?

剪刀张开的口又怎么变化?

教师点评:

如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,

二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配

共能组成几对角?

根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用

几何语言准确表达

有公共的顶点O,而且

的两边分别是

两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系?

(学生得出结论:

相邻关系的两个角互补,对顶的两个角相等)

3学生根据观察和度量完成下表:

两条直线相交

所形成的角

分类

位置关系

数量关系

教师提问:

如果改变

的大小,会改变它与其它角的位置关系和数量关系吗?

4.概括形成邻补角、对顶角概念和对顶角的性质

三.初步应用

练习:

下列说法对不对

(1)

邻补角可以看成是平角被过它顶点的一条射线分成的两个角

(2)邻补角是互补的两个角,互补的两个角是邻补角

(3)对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

四.巩固运用例题:

如图,直线a,b相交,

,求

的度数。

[巩固练习](教科书5页练习)已知,如图,

,求:

的度数

[小结]

邻补角、对顶角.

[作业]课本P9-1,2P10-7,8

[备选题]

一判断题:

如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角()

两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补()

二填空题

1如图,直线AB、CD、EF相交于点O,

的对顶角是,

的邻补角是

=2:

3,

,则

=

2如图,直线AB、CD相交于点O

 

5.1.2垂线

1.知识目标;

理解垂线、垂线段的概念,掌握点到直线的距离的概念和垂线的性质,

会用三角尺或量角器过一点画已知直线的垂线。

会度量点到直线的距离;

会利用所学知识进行简单的推理

3.情感目标;

教学重点:

垂线的定义及性质。

教学难点:

垂线的画法。

[教学过程设计]

一.复习提问:

1、叙述邻补角及对顶角的定义。

2、对顶角有怎样的性质。

二.新课:

引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?

日常生活中有没有这方面的实例呢?

下面我们就来研究这个问题。

(一)垂线的定义

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作

,垂足为O。

请同学举出日常生活中,两条直线互相垂直的实例。

注意:

1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:

(如上图)

反之,

(二)垂线的画法

探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条?

2、经过直线l上一点A画l的垂线,这样的垂线能画出几条?

3、经过直线l外一点B画l的垂线,这样的垂线能画出几条?

画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。

(三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:

性质1过一点有且只有一条直线与已知直线垂直。

教材第7页

如图,连接直线l外一点P与直线l上各点O,

A,B,C,……,其中

(我们称PO为点P到直线

l的垂线段)。

比较线段PO、PA、PB、PC……的长短,这些线段中,哪一条最短?

性质2连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:

垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

如上图,PO的长度叫做点P到直线l的距离。

例1

(1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB;

(4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离;

(6)线段AB是点B到AC的距离。

其中正确的有()

A.1个B.2个

C.3个D.4个

解:

A

例2如图,直线AB,CD相交于点O,

例3如图,一辆汽车在直线形公路AB上由A

向B行驶,M,N分别是位于公路两侧的村庄,

设汽车行驶到点P位置时,距离村庄M最近,

行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

1.

2.教材第9页3、4

教材第10页9、10、11、12

小结:

1.要掌握好垂线、垂线段、点到直线的距离这几个概念;

2.要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;

3.垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。

作业:

教材第9页5、6.

5.2.1平行线

[教学目标]

1.理解平行线的意义,了解同一平面内两条直线的位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;

4.了解平行线在实际生活中的应用,能举例加以说明.

[教学重点与难点]

1.教学重点:

平行线的概念与平行公理;

2.教学难点:

对平行公理的理解.

[教学过程]

一、复习提问

相交线是如何定义的?

二、新课引入

平面内两条直线的位置关系除平行外,还有哪些呢?

制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.

三、同一平面内两条直线的位置关系

1.平行线概念:

在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b.

(画出图形)

2.同一平面内两条直线的位置关系有两种:

(1)相交;

(2)平行.

3.对平行线概念的理解:

两个关键:

一是“在同一个平面内”(举例说明);

二是“不相交”.

一个前提:

对两条直线而言.

4.平行线的画法

平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:

一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).

四、平行公理

1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”.

2.平行公理:

经过直线外一点,有且只有一条直线与这条直线平行.

提问垂线的性质,并进行比较.

3.平行公理推论:

如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:

如果b∥a,c∥a,那么b∥c.

五、三线八角

由前面的教具演示引出.

如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.

六、课堂练习

1.在同一平面内,两条直线可能的位置关系是.

2.在同一平面内,三条直线的交点个数可能是.

3.下列说法正确的是()

A.经过一点有且只有一条直线与已知直线平行

B.经过一点有无数条直线与已知直线平行

C.经过一点有一条直线与已知直线平行

D.经过直线外一点有且只有一条直线与已知直线平行

4.若∠

与∠

是同旁内角,且∠

=50°

,则∠

的度数是()

A.50°

B.130°

C.50°

或130°

D.不能确定

5.下列命题:

(1)长方形的对边所在的直线平行;

(2)经过一点可作一条直线与已知直线平行;

(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;

(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()

A.1B.2C.3D.4

6.如图,直线AB,CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角.如果∠5=∠1,那么∠1∠3.

七、小结

让学生独立总结本节内容,叙述本节的概念和结论.

八、课后作业

1.教材P19第7题;

2.画图说明在同一平面内三条直线的位置关系及交点情况.

[补充内容]

1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

2.在同一平面内,两条直线的位置关系仅有两种:

相交或平行.但现实空间是立体的,

试想一想在空间中,两条直线会有哪些位置关系呢?

(用长方体来说明)

5.2.2直线平行的条件(第2课时)

一.教学目标

(1)使学生进一步理解并掌握判定两条直线平行的方法;

(2)了解简单的逻辑推理过程.

二.教学重点与难点

重点:

判定两条直线平行方法的应用;

难点:

简单的逻辑推理过程.

三.教学过程

复习提问:

1.判定两条直线平行的方法有哪些?

2.如图

(1)

(1)如果∠1=∠4,根据_________________,可得AB∥CD;

(2)如果∠1=∠2,根据_________________,可得AB∥CD;

(3)如果∠1+∠3=1800,根据______________,可得AB∥CD.

3.如图

(2)

(1)如果∠1=∠D,那么______∥________;

(2)如果∠1=∠B,那么______∥________;

(3)如果∠A+∠B=1800,那么______∥________;

(4)如果∠A+∠D=1800,那么______∥________;

新课:

例1在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?

为什么?

分析:

垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?

答:

这两条直线平行.

如图所示

理由如下:

∵b⊥a,c⊥a

∴∠1=∠2=900(垂直定义)

∴b∥c(同位角相等,两直线平行)

思考:

这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 农林牧渔 > 农学

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1