等离子点火与微油点火的应用文档格式.docx
《等离子点火与微油点火的应用文档格式.docx》由会员分享,可在线阅读,更多相关《等离子点火与微油点火的应用文档格式.docx(16页珍藏版)》请在冰豆网上搜索。
微油气化油枪燃烧形成的高温火焰,使进入一次室的浓相煤粉颗粒温度急剧升高、破裂粉碎,并释放出大量的挥发份迅速着火燃烧,然后由已着火燃烧的浓相煤粉在二次室内与稀相煤粉混合并点燃稀相煤粉,实现了煤粉的分级燃烧,燃烧能量逐级放大,达到点火并加速煤粉燃烧的目的,大大减少煤粉燃烧所需引燃能量。
满足了锅炉启、停及低负荷稳燃的需求。
二、等离子点火与微油点火的系统组成
1、等离子点火系统主要有:
等离子体点火燃烧器、等离子体发生器、等离子体电源及控制系统、冷炉制粉系统、风粉在线检测系统、压缩空气系统、循环冷却水系统以及火焰检测等系统构成。
等离子燃烧器改造一般布置在下层原主燃烧器位置,将该下层燃烧器一部或全部改造为等离子燃烧器,600MW以下的锅炉,一般每台炉设2~6台等离子燃烧器,800MW以上锅炉一般设8台等离子燃烧器。
2、气化微油点火燃烧器一般安装在最下层的一层或二层主燃烧器位置,安装数量与等离子基本相同。
系统构成:
由燃油系统、送粉系统、控制系统、辅助系统等部分组成。
燃油系统由燃油系统、压缩空气系统、高压风系统及气化小油枪等组成。
控制系统根据机组控制系统不同而采取不同方式,主要有就地手动控制与远程保护、PLC控制与FSSS联合保护、DCS控制与BMS(或FSSS)保护等几种。
辅助系统包括一次风速在线监测、燃烧器壁温监测、图象火焰监测、二次风等系统构成。
三、煤种适应性
1、从实际使用情况看,等离子对煤质稳定性的要求较高,主要是因为不同的煤质稳定点燃所需的点火能量不同,等离子技术的点火输入功率一般为110kW左右(约
10kg油的发热量),容量增加时电气设备也要相应增加,较为困难,因此输入功率的提高受到一定的限制。
等离子点火技术对于Aar≤35%的烟煤,可以做到无油点火;
对于Aar=35~45%的烟煤,可以做到节油点火;
对于,Var≤19%的烟煤等离子点火已经较难适应。
对于Mt≤25%,Aar≤30%的褐煤,可以实现无油点火,对于Mt≤28%,Aar≤14%的褐煤,可以实现节油点火。
对于Mt=40~42%的褐煤,目前点火困难,需用大油枪伴烧。
对于贫煤,等离子点火技术仅在50MW机组上有运行业绩。
对于无烟煤,国内等离子点火尚无业绩。
2、气化小油枪点火技术实际是借鉴了等离子点火的系统工程技术,只是将等离子发生器换为了气化油枪,同时又可适当调节和增加功率。
因此,对于煤种的适应性好于等离子点火技术。
它可以适应于所有烟煤,但是对于Var≤19%的烟煤小油枪的出力将提高到150kg/h以上。
对于贫煤和无烟煤,小油枪要完全借鉴等离子点火的技术就有较大困难。
因为等离子弧不消耗氧气,小油枪点火必须消耗氧气。
对于烟煤,小油枪所需油量较小,煤油抢风的问题不突出,对于贫煤和无烟煤,小油枪的油量需要达到150~300kg/h,煤油抢风造成无法将煤粉引燃的问题非常突出。
为了解决煤油抢风的问题,目前通常的措施,是对小油枪配风。
这又带来流速远高于火焰传播速度,无法点燃的问题。
同时燃烧器的阻力也上升到系统难于满足要求的地步,以至于煤粉也难于送入燃烧器。
四、冷炉点火
冷炉点火方式有多种选择:
先点燃大油枪,待炉内温度升高,热风温度可以满足制粉系统制粉后投入等离子或气化小油枪点火,再撤出大油枪;
利用邻炉热风制粉或在磨煤机入口加装暖风器的方式,满足点火初期制粉的需要,直接用等离子或气化小油枪点火启动;
等离子和气化小油枪标准化设计都配有冷炉制粉系统,主要是在进行改造的燃烧器对应磨煤机的入口安装暖风器,暖风器的设计既要保证在冷炉阶段的制粉出力的要求,又不能对管道阻力造成较大影响,一些工程设计中安装旁路以减小通风阻力。
通过降低点火初期的磨煤机出力和采用管道煤粉浓缩技术保证煤粉稳定的点燃,减小初期机组启动热负荷。
冷炉点火阶段,两种点火方式均能满足锅炉冷态启动曲线的要求,但对于超临界机组,有的电厂由于担心存在过热器氧化皮脱落的问题,刚开始点火时升温速率较高(在规程要求之内),可能会造成氧化皮的脱落。
为避免此种情况的发生冷炉点火时先投大油枪暖炉后再用等离子或小油枪的点火方式,这一问题的关键,是降低初始功率。
有些气化微油点火设计单位认为,启动阶段与常规油枪相比,热负荷较为集中,会造成锅炉膨胀不均,因此,建议开始启动阶段先用大油枪伴燃一段时间,以使锅炉膨胀均匀。
实际上煤火焰较长,加热应当更均匀,更可能是因为磨煤机的降出力措施不力,初始投入热量无法满足启动曲线的要求所造成。
五、锅炉点火初期煤粉量
锅炉点火初期的煤粉量受两个因素影响,一是锅炉的初始燃烧率,二是磨煤机的最小出力。
根据等离子点火的测试结果,初始燃烧率不超过额定负荷的5%,对于600MW亚临界机组燃用神华煤满负荷时总煤量在225吨左右,考虑到冷炉点火初期的燃尽率,如为85%,机组启动时的燃煤量不能超过13.2吨。
磨煤机的最小出力是直接反映锅炉刚启动时的输入热量,最小出力大于锅炉初始燃烧率时,锅炉的温升速率会提高,如HP983磨煤机燃用神华煤时设计出力最大出力是63.5t/h,最小出力一般为最大出力的25%,即15.8t/h,大于锅炉初始燃烧率。
因此,为减小温升速率过高,对于大型机组必须设法进一步降低磨煤机的出力(低于磨煤机设计最小出力)。
但磨煤机的最小出力受磨煤机型式,干燥、研磨、通风、基本出力、磨煤机振动的制约。
等离子和气化微油点火设计厂家与运行电厂都已通过试验调整,如采取调整磨煤机加载、控制风温等方法,但各电厂进一步降低后的磨煤机最低出力差别较大,即使是同型号、同煤种的磨煤机由于控制措施的不同差别也很大,如HP983磨煤机的磨煤机的最小出力范围在7~14之间。
一般出力过低时磨煤机振动较大,磨煤机安全运行受到威胁。
因此,磨煤机出力的降低是有一定限度的。
同时磨煤机的出力降低后由于风量不是等比降低的,造成煤粉浓度下降,在煤粉浓度低于0.20kg/kg时对于等离子点火技术较难点燃,气化微油点火技术由于油量较大,输入热量是等离子的2倍以上,所以点燃能力较强,但为保证点火的可靠性,两种技术都采用了管道煤粉浓缩技术。
因设计能力和专利的限制,各个厂家的浓缩方式和效果有所区别,等离子点火技术管道浓缩技术比较成熟,能够确保管道平均煤粉浓度在0.16~0
.2kg/kg的条件下可靠地点燃,这对于缩短磨煤机启动到点燃,确保点火时不发生爆燃有重要作用。
六、助燃效果与低负荷稳燃性能
在锅炉正常运行期间,等离子和气化微油点火设备处于备用状态,有些电厂反映:
经过改造的等离子或气化微油点火燃烧器作为主燃烧器使用时,稳燃性能有所下降。
当锅炉接近或达到最低不投油稳燃负荷以下时,等离子点火或气化微油点火设备可投入稳定负荷。
但如果进行等离子或气化微油点火改造后的制粉系统处于停备状态这时的稳燃及时性最差,因制粉系统启动需要投入消防蒸汽3~5分钟,这种情况下可能起不到稳燃作用。
特别是在事故状态下,如果不能及时投入可能造成机组非停。
因此,两种技术的助燃效果显然是不及大油枪的。
七、可靠性分析
等离子点火易损部件主要是阴极和阳极,一般阴极的寿命在100h左右,阳极的寿命在500~1000h之间,根据拉弧时间的长短,制造厂设计了阴阳极寿命监测装置,可作为更换时的参考,但因阴极的寿命相对较短,等离子装置使用期间,运行维护人员必须加强监视和维护,以提高可靠性。
等离子点火断弧,是威胁点火安全的主要问题,主要是需要保证载体风的品质,如采用压缩空气作为等离子载体,应采用仪用压缩空气。
气化微油点火技术最常见的故障是小油枪堵塞造成灭火。
对于烟煤由于油枪出力低,雾化装置孔径较小,油管路稍有杂物即造成堵塞,造成燃烧器灭火,威胁点火的安全。
小油枪积炭堵塞,也是主要故障之一。
因此,气化微油点火技术关键在于油管路的施工工艺,必须用氩弧焊打底,电焊盖面,油管路必须用蒸汽吹扫以后以后才能充油,有的工程安装过程没有认真对待,造成小油枪断油。
小油枪主要的维护工作在于滤网和油枪头的清理,必须保证油的质量、管道干净,根据滤网压差的情况定期做一下清理,才能保证投入。
因此,综合比较,气化微油点火技术由于较等离子点火系统简单,可靠性高一些。
八、燃烧效率
燃烧效率的高低与煤种有很大关系,主要影响因素有煤的挥发分、水分、灰分、煤粉细度等,对于神华煤等离子点火的燃烧效率可以达到80~95%,气化微油点火技术由于输入热量高燃烧效率更高一些。
等离子点火在燃用神华煤的锅炉上,燃烧效率高达92%以上时,也发生过空气预热器、灰库二次燃烧。
小油枪煤油混烧,则更应引起注意,甚至有的燃用贫煤的机组点火三小时后就发生空气预热器二次燃烧。
为此,等离子点火对此已经由有资质的单位对一些大机组进行了考核,并制定了防止二次燃烧及防止爆燃的标准化安全措施。
气化微油点火,飞灰可燃物的测量,尚无可靠的数据,因大部分电厂是在除尘器灰斗中随机取的样品,缺乏准确的测量报告。
从运行电厂的整体反映情况看点火初期的飞灰可燃物还是比较高的,应加强空气预器的吹灰工作,防止尾部自燃,同时也要做好此阶段灰的输送、储存过程的防自燃措施。
九、燃烧器防结渣、超温
等离子和气化微油点火技术均采用在燃烧器内分级燃烧,逐级放大的方式,燃烧器内易造成超温和结渣,为防止此现象的发生。
等离子技术放弃了开始采用的径向点火拉弧方式,此方式在早期使用的多家电厂中均出现了燃烧器内结渣,改为轴向点火的方式,从实际应用的效果看基本上可以避免结渣的发生。
气化微油点火技术目前切向和轴向点火方式均采用,也有燃烧器内结渣的信息报道,当设计不当时还有将燃烧器烧坏的问题发生。
两种技术对燃烧器的壁温均设有监测系统,避免超温损坏,设计的温度600℃,一般正常运行的温度都在450℃以下。
同时燃烧器的设计还采用了耐高温和磨损的材料。
为了保证煤粉燃烧后,燃烧器筒壁不烧坏,不结渣,气化微油微油技术采取下列措施:
(1)采用气膜冷却,保证燃烧筒壁不烧坏
(2)利用高速二次风吹扫壁面,防止结渣。
在早期等离子点火燃烧器中也采取气膜冷却技术,但是在作为主燃烧器时,气膜结构易于磨损,在发明了压差平衡式燃烧器以后,气膜装置已经淘汰。
小油枪采用气膜冷却技术,在作为主燃烧器时,磨损后其是否能保持设计性能,尚待考验。
十、燃烧器阻力
在进行改造时,气化微油点火技术远大于等离子点火技术输入的热量,油在点火过程中需要大量的氧气,存在配置不好向煤粉抢氧的问题,点火用风通过微油助燃风系统送入,风压1.5~3kPa,且因燃烧器的有限空间内着火气流整体温度很高,体积剧烈膨胀等都会导致燃烧器喷口的气流速度非常高,大于火焰传播速度时,会造成火焰燃烧不稳定,燃烧效率大幅度降低。
因燃烧器阻力也因此增大,特别是点燃贫煤或无烟煤时,造成煤粉送不进炉膛无法点火的问题。
对于中间仓储式系统,由于这一问题