卷积神经网络机器学习外文文献翻译中英文Word下载.docx

上传人:b****3 文档编号:13464637 上传时间:2022-10-10 格式:DOCX 页数:8 大小:24.80KB
下载 相关 举报
卷积神经网络机器学习外文文献翻译中英文Word下载.docx_第1页
第1页 / 共8页
卷积神经网络机器学习外文文献翻译中英文Word下载.docx_第2页
第2页 / 共8页
卷积神经网络机器学习外文文献翻译中英文Word下载.docx_第3页
第3页 / 共8页
卷积神经网络机器学习外文文献翻译中英文Word下载.docx_第4页
第4页 / 共8页
卷积神经网络机器学习外文文献翻译中英文Word下载.docx_第5页
第5页 / 共8页
点击查看更多>>
下载资源
资源描述

卷积神经网络机器学习外文文献翻译中英文Word下载.docx

《卷积神经网络机器学习外文文献翻译中英文Word下载.docx》由会员分享,可在线阅读,更多相关《卷积神经网络机器学习外文文献翻译中英文Word下载.docx(8页珍藏版)》请在冰豆网上搜索。

卷积神经网络机器学习外文文献翻译中英文Word下载.docx

卷积神经网络机器学习外文文献翻译中英文@#@卷积神经网络机器学习相关外文翻译中英文2020@#@英文@#@Predictionofcompositemicrostructurestress-straincurvesusingconvolutionalneuralnetworks@#@CharlesYang,YoungsooKim,SeunghwaRyu,GraceGu@#@Abstract@#@Stress-straincurvesareanimportantrepresentationofamaterial'@#@smechanicalproperties,fromwhichimportantpropertiessuchaselasticmodulus,strength,andtoughness,aredefined.However,generatingstress-straincurvesfromnumericalmethodssuchasfiniteelementmethod(FEM)iscomputationallyintensive,especiallywhenconsideringtheentirefailurepathforamaterial.Asaresult,itisdifficulttoperformhighthroughputcomputationaldesignofmaterialswithlargedesignspaces,especiallywhenconsideringmechanicalresponsesbeyondtheelasticlimit.Inthiswork,acombinationofprincipalcomponentanalysis(PCA)andconvolutionalneuralnetworks(CNN)areusedtopredicttheentirestress-strainbehaviorofbinarycompositesevaluatedovertheentirefailurepath,motivatedbythesignificantlyfasterinferencespeedofempiricalmodels.WeshowthatPCAtransformsthestress-straincurvesintoaneffectivelatentspacebyvisualizingtheeigenbasisofPCA.Despitehavingadatasetofonly10-27%ofpossiblemicrostructureconfigurations,themeanabsoluteerrorofthepredictionis<@#@10%oftherangeofvaluesinthedataset,whenmeasuringmodelperformancebasedonderivedmaterialdescriptors,suchasmodulus,strength,andtoughness.Ourstudydemonstratesthepotentialtousemachinelearningtoacceleratematerialdesign,characterization,andoptimization.@#@Keywords:

@#@Machinelearning,Convolutionalneuralnetworks,Mechanicalproperties,Microstructure,Computationalmechanics@#@Introduction@#@Understandingtherelationshipbetweenstructureandpropertyformaterialsisaseminalprobleminmaterialscience,withsignificantapplicationsfordesigningnext-generationmaterials.Aprimarymotivatingexampleisdesigningcompositemicrostructuresforload-bearingapplications,ascompositesofferadvantageouslyhighspecificstrengthandspecifictoughness.Recentadvancementsinadditivemanufacturinghavefacilitatedthefabricationofcomplexcompositestructures,andasaresult,avarietyofcomplexdesignshavebeenfabricatedandtestedvia3D-printingmethods.Whilemoreadvancedmanufacturingtechniquesareopeningupunprecedentedopportunitiesforadvancedmaterialsandnovelfunctionalities,identifyingmicrostructureswithdesirablepropertiesisadifficultoptimizationproblem.@#@Onemethodofidentifyingoptimalcompositedesignsisbyconstructinganalyticaltheories.Forconventionalparticulate/fiber-reinforcedcomposites,avarietyofhomogenizationtheorieshavebeendevelopedtopredictthemechanicalpropertiesofcompositesasafunctionofvolumefraction,aspectratio,andorientationdistributionofreinforcements.Becausemanynaturalcomposites,synthesizedviaself-assemblyprocesses,haverelativelyperiodicandregularstructures,theirmechanicalpropertiescanbepredictediftheloadtransfermechanismofarepresentativeunitcellandtheroleoftheself-similarhierarchicalstructureareunderstood.However,theapplicabilityofanalyticaltheoriesislimitedinquantitativelypredictingcompositepropertiesbeyondtheelasticlimitinthepresenceofdefects,becausesuchtheoriesrelyontheconceptofrepresentativevolumeelement(RVE),astatisticalrepresentationofmaterialproperties,whereasthestrengthandfailureisdeterminedbytheweakestdefectintheentiresampledomain.Numericalmodelingbasedonfiniteelementmethods(FEM)cancomplementanalyticalmethodsforpredictinginelasticpropertiessuchasstrengthandtoughnessmodulus(referredtoastoughness,hereafter)whichcanonlybeobtainedfromfullstress-straincurves.@#@However,numericalschemescapableofmodelingtheinitiationandpropagationofthecurvilinearcracks,suchasthecrackphasefieldmodel,arecomputationallyexpensiveandtime-consumingbecauseaveryfinemeshisrequiredtoaccommodatehighlyconcentratedstressfieldnearcracktipandtherapidvariationofdamageparameterneardiffusivecracksurface.Meanwhile,analyticalmodelsrequiresignificanthumaneffortanddomainexpertiseandfailtogeneralizetosimilardomainproblems.Inordertoidentifyhigh-performingcompositesinthemidstoflargedesignspaceswithinrealistictime-frames,weneedmodelsthatcanrapidlydescribethemechanicalpropertiesofcomplexsystemsandbegeneralizedeasilytoanalogoussystems.Machinelearningoffersthebenefitofextremelyfastinferencetimesandrequiresonlytrainingdatatolearnrelationshipsbetweeninputsandoutputse.g.,compositemicrostructuresandtheirmechanicalproperties.Machinelearninghasalreadybeenappliedtospeeduptheoptimizationofseveraldifferentphysicalsystems,includinggraphenekirigamicuts,fine-tuningsp

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿教育 > 育儿知识

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1