1碳化硅加工工艺流程文档格式.docx

上传人:b****2 文档编号:13432966 上传时间:2022-10-10 格式:DOCX 页数:9 大小:54.79KB
下载 相关 举报
1碳化硅加工工艺流程文档格式.docx_第1页
第1页 / 共9页
1碳化硅加工工艺流程文档格式.docx_第2页
第2页 / 共9页
1碳化硅加工工艺流程文档格式.docx_第3页
第3页 / 共9页
1碳化硅加工工艺流程文档格式.docx_第4页
第4页 / 共9页
1碳化硅加工工艺流程文档格式.docx_第5页
第5页 / 共9页
点击查看更多>>
下载资源
资源描述

1碳化硅加工工艺流程文档格式.docx

《1碳化硅加工工艺流程文档格式.docx》由会员分享,可在线阅读,更多相关《1碳化硅加工工艺流程文档格式.docx(9页珍藏版)》请在冰豆网上搜索。

1碳化硅加工工艺流程文档格式.docx

化学成份:

主要杂质有:

游离硅(F.Si),它一部分溶解在碳化硅晶体中,一部分与其它金属杂质(铁、铝、钙)呈金属状态存在。

游离二氧化硅(F.SiO2)通常存在于晶体表面,大都是由于冶炼碳化硅电阻炉冷却过程中,碳化硅氧化而形成。

正常的情况下,绿碳化硅结晶块表面的游离硅,二氧化硅的含量为0.6%左右,当配料中二氧化硅过量时,二氧化硅会蒸发凝聚在碳化硅晶体表面上,呈白色绒毛状。

碳:

(C),当配比碳过量时,看到明显的游离状态的碳粒。

铁、铝、钙、镁由于炉内产品高温及还原性气氛,结晶块中的这些杂质大都呈合金状态或碳化物状态。

碳化硅磨料的化学成分;

随着磨料粒度的变化略有波动,粒度越细,纯度越低。

(为什么呢?

杂质出来了)

化学性质:

耐高温,抗氧化性能好。

物理性能:

介于刚玉和金刚石之间,硬度高、耐磨,粒度越细,机械强度越高,抗碎,韧性强。

导电性能:

工业碳化硅是一种半导体,但其随着各种杂质的含量不同,导电性也随之发生变化,含铝较多时导电性显著增大,虽电场强度的增大而迅速提高,而且有非线性变化的特点。

碳化硅的这一特性被用于制作避雷器阀片。

碳化硅的电阻率随温度的变化而改变,但在一定的温度范围内与金属的电阻温度特性是相反的,随温度升高到一定时值时、出现峰值,继续升高温度时,导电率又会下降。

三、碳化硅的用途:

1、磨料--主要是因为碳化硅具有很高的硬度,化学稳定性和一定的韧性,所以碳化硅能用于制造固结磨具、涂附磨具和自由研磨,从而来加工玻璃、陶瓷、石材、铸铁及某些非铁金属、硬质合金、钛合金、高速钢刀具和砂轮等。

绿碳化硅具较高的硬度和一定的韧性;

多用于磨加工光学玻璃、硬质合金、钛合金以及轴承钢的研磨抛光、高速钢刀具的刃磨等。

黑碳化硅多用于切割和研磨抗强度低的材料,如;

有色金属、灰铸铁工件、玻璃、陶瓷、石材和耐火制品;

微粉磨料专用于轴承的超精磨、其特点是磨削效率和精度高。

2、耐火材料和耐腐蚀材料---主要是因为碳化硅具有高熔点(分解温度)、化学惰性和抗热振性,所以碳化硅能用于磨具、陶瓷制品烧成窑炉中用的棚板和匣钵、炼锌工业竖缸蒸馏炉用的碳化硅砖、铝电解槽衬、坩锅、小件炉材等多种碳化硅陶瓷制品。

碳化硅具有很好的抗热震性能,因此是一种优质耐火材料,按制品的生产工艺不同可分为再结晶碳化硅、制品、高温热压制品、以氮化硅或粘土为结合剂的制品等,主要产品及用途有;

高温炉窑构件、支撑件、如匣体衬板等,在电炉中作加热式炉底、换热器、热电偶套管等;

炼铁高炉用于出铁槽,铁水包内衬或碳化硅耐火砖等,焦化厂使用碳化硅材料衬砌炽热焦炭用流槽,砌筑碳化室炉底等。

3、冶金行业和化工行业:

在当代C、N、B等非氧化物高技术耐火原料中,碳化硅为应用最广泛、最经济的一种。

因为碳化硅可在溶融钢水中分解并和钢水中的游离氧、金属氧化物反应生成一氧化碳和含硅炉渣。

所以它可作为冶炼钢铁的净化剂,即用作炼钢的脱氧剂和铸铁组织改良剂;

多用于各种冶炼的耐火内衬,炼钢脱氧剂,铸铁组织改良等;

比焦炭、硅粉等传统炼钢脱氧剂效果好,可使钢材质量提高;

电工行业:

多用于电热原件高温半导体材料、远红外线板,避雷器阀片材料等。

化工行业利用碳化硅的稳定性制作各种化工管道、阀门等。

用于电镀法将碳化硅微粉涂敷于汽(水)轮机叶轮上,可以大大提高叶轮的耐磨性能,由于碳化硅具有优良的高温强度和抗氧化性能,它以成为高温非氧化物陶瓷的主要原材料。

一般使用低纯度的碳化硅,以降低成本。

同时还可以作为制造四氯化硅的原料。

四、碳化硅产品加工工艺流程

1、制砂生产线设备组成

  制砂生产线由颚式破碎机、对辊破碎机、球磨机、清吹机、磁选机、振动筛和皮带机等设备组合而成。

根据不同的工艺要求,各种型号的设备进行组合,满足客户的不同工艺要求。

  

2、制砂生产线基本流程

首先,原料由粗碎机进行初步破碎,然后,产成的粗料由皮带输送机输送至细碎机进行进一步破碎,细碎后的原料进入球磨机或锤式破碎机进行精细加工,再经过清吹机除游离碳,磁选机除磁性物,最后经过振动筛筛分出最终产品。

 

3、制砂生产线性能介绍

  该制砂生产线自动化程度较高,工序紧凑,操作简便,配套合理,运行成本低,生产率高,节能,产量大,污染较少,维修简便,生产出的成品砂符合国家标准,粒度均匀,粒形较好,各粒度段分布较为合理。

4、制砂生产线特点和优势

  1,投资仅为同等处理能力常规生产线的1/3—1/5。

  2,每吨砂生产成本仅为常规生产线的1/3—1/4。

  3,生产自动化程度较高,每班生产人员为湿法制砂一半以下。

4,投资回收期短,一般3个月可收回投资。

五、碳化硅破碎工艺方案选择

1、破碎工艺流程的选择,首先是确定破碎段数,这取决于最初给料粒度和对最终破碎产品的粒度要求。

一般情况下,只经过初级破碎是不能生产最终产品的。

(三级品破碎除外)

最初给料粒度与冶炼分级方法及分级产品的入库保存方式有关;

最终破碎产品粒度主要取决于破碎之后的产品工艺要求及现场的设备工艺水平有关。

2、破碎段一般分为:

一段法、二段法、三段法和四段法;

一段法主要是初级破碎:

即采用颚破、锤破进行破碎;

而且锤破只能破碎硬度较小的三级品。

产品粒度一般在0-30mm至0-50mm。

锤破产品不经过筛分粒度一般在0-10mm左右。

二段法主要是初级破碎加上中级破碎:

即采用颚破进行初级破碎后,使用对辊破、锤破、反击破等大中型破碎机进行中级破碎,然后得到最终产品,对辊破产品粒度一般在0-30mm左右。

锤破、反击破产品不经过筛分粒度一般在0-10mm左右。

三段法主要是初级破碎加上中级破碎,之后在进行精细破碎:

即采用颚破进行初级破碎后,使用对辊破、锤破、反击破等大中型破碎机进行中级破碎,然后使用球磨机、巴马克破碎机、轮碾加工后等得到最终产品,不经过筛分粒度一般在0-5mm左右。

配合振筛可以得到0-1mm的产品,筛上物一般在10%-30%左右;

巴马克破碎机的筛上物可以达到在30%-50%左右。

从产品的粒型来评价;

轮碾最好,球磨机最差。

另外制粉加工也属于三段法:

即初级破碎加上中级破碎,之后在进行雷蒙磨制粉加工。

四段法一种是在前面安排进行预先破碎,然后进行初级破碎、中级破碎,再进行精细破碎;

另一种是初级破碎加上中级破碎,在进行精细破碎后再重新进行整形破碎:

主要是球磨机加工后进行整形加工等得到最终产品,经过多次整形加工后得到最佳的产品粒型。

我厂的产品加工主要是二段法和三段法:

即初级破碎采用颚破,中级破碎采用对辊破、锤破,精细破碎使用球磨机、巴马克、雷蒙磨加工后等得到最终产品。

六、我厂碳化硅加工部分产品加工工艺流程比较分析

1、典型0-1mm产品:

首先,原料由颚式破碎机进行初步破碎,然后,产成的粗料由皮带输送机输送至对辊破碎机进行进一步破碎,细碎后的原料进入球磨机或锤式破碎机进行精细加工,最后经过振动筛筛分出最终产品。

有磁性物要求的产品,还要使用磁选机除磁性物。

最终,加工出来的产品经过产品化验符合技术指标后,正式封袋入库。

方案中不同主要是在使用球磨机或锤式破碎机进行精细加工;

使用球磨机产品的粒型较好,产品加工过程中,粉尘可以很好的控制,但弊端在于:

球磨机的使用费用较大,投入的设备较多,电费大。

使用锤破时产品的粒型较差,产品加工过程中,粉尘无法控制,更换锤头次数比较频繁,筛分过程中筛上物较多;

但好处在于:

锤破的使用费用较小,投入的设备较少,电费花费小。

2、80目以细或100目以细产品:

首先,原料由颚式破碎机进行初步破碎,然后对辊破碎机进行进一步破碎,细碎后的原料进入球磨机或雷蒙磨进行精细加工,最后经过振动筛筛分出最终产品。

方案中不同主要是在使用球磨机或雷蒙磨进行精细加工;

球磨机的生产率较低,筛上物较多,筛分时损失较小。

使用雷蒙磨时产品的粒度较细,产品在筛分加工过程中,粉尘无法控制,筛上物较少,但筛分时损失较大。

3、典型3-5mm产品:

首先原料由颚式破碎机进行初步破碎,然后对辊破碎机进行进一步破碎,细碎后的原料进入巴马克或锤式破碎机进行精细加工,最后经过振动筛筛分出最终产品。

方案中不同主要是在使用巴马克或锤式破碎机进行精细加工;

使用巴马克加工产品的粒型较好,产品加工过程中,粉尘可以很好的控制,但弊端在于:

巴马克的使用费用较大,投入的设备较多,换巴马克锤头次数特别频繁,筛分时筛上物十分大,原料制备量大。

锤破的使用费用较小,投入的设备较少,原料制备量较大。

七、筛分技术简介

机械筛分是目前筛分作业使用的主要筛分技术,振动筛设备的主要工作构件是筛面,目前广泛应用的是钢板冲孔筛和编织筛,这里我们将介绍下筛分的应用方面及一般的计算方法。

制砂加工中筛分技术的应用集中在以下两个方面,一是对原料中的杂质进行清理,二是将原料或产品按粒径进行分级,包括原料杂质清理、粉碎物料分级、制粒前的粉料杂质清理、制粒产品的分级。

加工过程中筛分效果的好坏对碳化硅加工产品的质量和产量具有相当重要的影响。

筛分效率及其影响因素

1.筛分效率筛分效率包括二个方面:

应该留存筛面物料(预期筛上物)的筛上留存比例和应该通过筛面物料(预期筛下物)的筛上留存比例。

这二个指标在清理操作中影响杂质的清除效果和净原料的损失,在分级操作中影响产品的粒度和产量,在检测中则影响分级结果的可靠性。

前者称为筛净率,后者称为误筛率,用公式表示为:

η1=w1/w2×

100%

η2=w3/w4×

式中η1—筛净率,%;

η2—误筛率,%;

W1—预期筛上物的筛上留存量,kg/h;

W2—预期筛上物总量,kg/h;

W3—预期筛下物的筛上留存量,kg/h;

W4—预期筛下物总量,kg/h。

将上面二个指标用于评价清理筛效率,当筛上物为杂质时,η1相当于除杂率,η2相当于净原料损失率。

2、影响筛分效果的因素通过筛孔的最大物料颗粒直径可由下式估算:

d=Dcosα-esinα

式中,d—通过筛孔的最大颗粒直径,mm;

D—筛孔直径,mm;

e—筛网网丝直径,mm;

α—筛面倾角。

从式(3)可以看出,筛孔直径、网丝直径、筛面倾角均影响颗粒能通过筛孔的最大

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1