高一数学 集合教案文档格式.docx
《高一数学 集合教案文档格式.docx》由会员分享,可在线阅读,更多相关《高一数学 集合教案文档格式.docx(8页珍藏版)》请在冰豆网上搜索。
集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:
北京、上海、天津、重庆。
集合中的元素常用小写的拉丁字母,…表示.如果a是集合A的元素,就说a属于集合A,记作;
否则,就说a不属于A,记作
要正确认识集合中元素的特性:
(l)确定性:
和,二者必居其一.
集合中的元素必须是确定的.这就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了.例如,给出集合{地球上的四大洋},它的元素是:
太平洋、大西洋、印度洋、北冰洋.其他对象都不用于这个集合.如果说“由接近的数组成的集合”,这里“接近的数”是没有严格标准、比较模糊的概念,它不能构成集合.
(2)互异性:
若,,则
集合中的元素是互异的.这就是说,集合中的元素是不能重复的,集合中相同的元素只能算是一个.例如方程有两个重根,其解集只能记为{1},而不能记为{1,1}.
(3)无序性:
{a,b}和{b,a}表示同一个集合.
集合中的元素是不分顺序的.集合和点的坐标是不同的概念,在平面直角坐标系中,点(l,0)和点(0,l)表示不同的两个点,而集合{1,0}和{0,1}表示同一个集合.
5.要辩证理解集合和元素这两个概念
(1)集合和元素是两个不同的概念,符号和是表示元素和集合之间关系的,不能用来表示集合之间的关系.例如的写法就是错误的,而的写法就是正确的.
(2)一些对象一旦组成了集合,那么这个集合的元素就是这些对象的全体,而非个别现象.例如对于集合,就是指所有不小于0的实数,而不是指“可以在不小于0的实数范围内取值”,不是指“是不小于0的一个实数或某些实数,”也不是指“是不小于0的任一实数值”……
(3)集合具有两方面的意义,即:
凡是符合条件的对象都是它的元素;
只要是它的元素就必须符合条件.
6.表示集合的方法所依据的国家标准
本小节列举法与描述法所使用的集合的记法,依据的是新国家标准如下的规定.
符号
应用
意义或读法
备注及示例
诸元素构成的集
也可用,这里的I表示指标集
使命题为真的A中诸元素之集
例:
,如果从前后关系来看,集A已很明确,则可使用来表示,例如
此外,有时也可写成或
7.集合的表示方法分析
集合有三种表示方法:
列举法、描述法、图示法.它们各有优点.用什么方法来表示集合,要具体问题具体分析.
(l)有的集合可以分别用三种方法表示.例如“小于的自然数组成的集合”就可以表为:
①列举法:
;
②描述法:
③图示法:
如图1。
(2)有的集合不宜用列举法表示.例如“由小于的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素—一列举出来,但这个集合可以这样表示:
①描述法:
②图示法:
如图2.
(3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如:
①集合中的元素是,它表示函数中自变量的取值范围,即;
②集合中的元素是,它表示函数值。
的取值范围,即;
③集合中的元素是点,它表示方程的解组成的集合,或者理解为表示曲线上的点组成的集合;
④集合中的元素只有一个,就是方程,它是用列举法表示的单元素集合.
实际上,这是四个完全不同的集合.
列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.
8.集合的分类
含有有限个元素的集合叫做有限集,如图1所示.
含有无限个元素的集合叫做无限集,如图2所示.
9.关于空集分析
不含任何元素的集合叫做空集,记作.空集是个特殊的集合,除了它本身的实际意义外,在研究集合、集合的运算时,必须予以单独考虑.
教学设计方案
集合
知识目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
能力目标:
(1)重视基础知识的教学、基本技能的训练和能力的培养;
(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;
(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;
德育目标:
激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
教学重点:
集合的基本概念及表示方法
教学难点:
运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合
授课类型:
新授课
课时安排:
2课时
教
具:
多媒体、实物投影仪
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?
是如何定义的?
(2)有那些符号?
是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念(例子见书):
1、集合的概念
(1)集合:
某些指定的对象集在一起就形成一个集合。
(2)元素:
集合中每个对象叫做这个集合的元素。
2、常用数集及记法
(1)非负整数集(自然数集):
全体非负整数的集合。
记作N
(2)正整数集:
非负整数集内排除0的集。
记作N*或N+
(3)整数集:
全体整数的集合。
记作Z
(4)有理数集:
全体有理数的集合。
记作Q
(5)实数集:
全体实数的集合。
记作R
注:
(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。
记作N*或N+、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*
3、元素对于集合的隶属关系
(1)属于:
如果a是集合A的元素,就说a属于A,记作a∈A;
(2)不属于:
如果a不是集合A的元素,就说a不属于A,记作.
4、集合中元素的特性
(1)确定性:
按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:
集合中的元素没有重复。
(3)无序性:
集合中的元素没有一定的顺序(通常用正常的顺序写出)
1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
2、“∈”的开口方向,不能把a∈A颠倒过来写。
练习题
1、教材P5练习
2、下列各组对象能确定一个集合吗?
(1)所有很大的实数。
(不确定)
(2)好心的人。
(3)1,2,2,3,4,5.(有重复)
阅读教材第二部分,问题如下:
1.集合的表示方法有几种?
分别是如何定义的?
2.有限集、无限集、空集的概念是什么?
试各举一例。
(二)集合的表示方法
1、列举法:
把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例如,由方程的所有解组成的集合,可以表示为{-1,1}.
注:
(1)有些集合亦可如下表示:
从51到100的所有整数组成的集合:
{51,52,53,…,100}
所有正奇数组成的集合:
{1,3,5,7,…}
(2)a与{a}不同:
a表示一个元素,{a}表示一个集合,该集合只有一个元素。
描述法:
用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:
{x∈A|P(x)}
含义:
在集合A中满足条件P(x)的x的集合。
例如,不等式的解集可以表示为:
或
所有直角三角形的集合可以表示为:
(1)在不致混淆的情况下,可以省去竖线及左边部分。
如:
{直角三角形};
{大于104的实数}
(2)错误表示法:
{实数集};
{全体实数}
3、文氏图:
用一条封闭的曲线的内部来表示一个集合的方法。
何时用列举法?
何时用描述法?
(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。
如:
集合
(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
集合;
集合{1000以内的质数}
集合与集合是同一个集合吗?
答:
不是。
集合是点集,集合=是数集。
(三)有限集与无限集
1、
有限集:
含有有限个元素的集合。
2、
无限集:
含有无限个元素的集合。
3、
空集:
不含任何元素的集合。
记作Φ,如:
练习题:
1、P6练习
2、用描述法表示下列集合
①{1,4