初中数学复习十字相乘法进行因式分解详案Word文件下载.docx

上传人:b****3 文档编号:13416446 上传时间:2022-10-10 格式:DOCX 页数:10 大小:323.89KB
下载 相关 举报
初中数学复习十字相乘法进行因式分解详案Word文件下载.docx_第1页
第1页 / 共10页
初中数学复习十字相乘法进行因式分解详案Word文件下载.docx_第2页
第2页 / 共10页
初中数学复习十字相乘法进行因式分解详案Word文件下载.docx_第3页
第3页 / 共10页
初中数学复习十字相乘法进行因式分解详案Word文件下载.docx_第4页
第4页 / 共10页
初中数学复习十字相乘法进行因式分解详案Word文件下载.docx_第5页
第5页 / 共10页
点击查看更多>>
下载资源
资源描述

初中数学复习十字相乘法进行因式分解详案Word文件下载.docx

《初中数学复习十字相乘法进行因式分解详案Word文件下载.docx》由会员分享,可在线阅读,更多相关《初中数学复习十字相乘法进行因式分解详案Word文件下载.docx(10页珍藏版)》请在冰豆网上搜索。

初中数学复习十字相乘法进行因式分解详案Word文件下载.docx

分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;

当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.

(2)对于二次项系数不是1的二次三项式(a,b,c都是整数且a≠0)来说,如果存在四个整数,使,,且,

那么它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;

常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;

常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注意避免以下两种错误出现:

一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;

二是由十字相乘写出的因式漏写字母.如:

3.因式分解一般要遵循的步骤

多项式因式分解的一般步骤:

先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:

“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.

【典型热点考题】

例1把下列各式分解因式:

(1);

(2).

点悟:

(1)常数项-15可分为3×

(-5),且3+(-5)=-2恰为一次项系数;

(2)将y看作常数,转化为关于x的二次三项式,常数项可分为(-2y)(-3y),而(-2y)+(-3y)=(-5y)恰为一次项系数.

解:

例2把下列各式分解因式:

我们要把多项式分解成形如的形式,这里,而.

点拨:

二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.

例3把下列各式分解因式:

(2);

(3).

(1)把看作一整体,从而转化为关于的二次三项式;

(2)提取公因式(x+y)后,原式可转化为关于(x+y)的二次三项式;

(3)以为整体,转化为关于的二次三项式.

(1)

=(x+1)(x-1)(x+3)(x-3).

(2)

=(x+y)[(x+y)-1][7(x+y)+2]

=(x+y)(x+y-1)(7x+7y+2).

(3)

要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,以顺利地进行分解.同时要注意已分解的两个因式是否能继续分解,如能分解,要分解到不能再分解为止.

例4分解因式:

把看作一个变量,利用换元法解之.

设,则

原式=(y-3)(y-24)+90

=(y-18)(y-9)

本题中将视为一个整体大大简化了解题过程,体现了换元法化简求解的良好效果.此外,一步,我们用了“十字相乘法”进行分解.

例5分解因式.

可考虑换元法及变形降次来解之.

原式

令,则

本题连续应用了“十字相乘法”分解因式的同时,还应用了换元法,方法巧妙,令人眼花瞭乱.但是,品味之余应想到对换元后得出的结论一定要“还原”,这是一个重要环节.

例6分解因式.

方法1:

依次按三项,两项,一项分为三组,转化为关于(x-y)的二次三项式.

方法2:

把字母y看作是常数,转化为关于x的二次三项式.

解法1:

解法2:

=(x-y-6)(x-y+1).

例7分解因式:

ca(c-a)+bc(b-c)+ab(a-b).

先将前面的两个括号展开,再将展开的部分重新分组.

ca(c-a)+bc(b-c)+ab(a-b)

=(a-b)(c-a)(c-b).

因式分解,有时需要把多项式去括号、展开、整理、重新分组,有时仅需要把某几项展开再分组.此题展开四项后,根据字母c的次数分组,出现了含a-b的因式,从而能提公因式.随后又出现了关于c的二次三项式能再次分解.

例8已知有一个因式是,求a值和这个多项式的其他因式.

因为是四次多项式,有一个因式是,根据多项式的乘法原则可知道另一个因式是(a、b是待定常数),故有.根据此恒等关系式,可求出a,b的值.

设另一个多项式为,则

∵与是同一个多项式,所以其对应项系数分别相等.即有

由①、③解得,a=-1,b=1,

代入②,等式成立.

∴a=-1,另一个因式为.

这种方法称为待定系数法,是很有用的方法.待定系数法、配方法、换元法是因式分解较为常用的方法,在其他数学知识的学习中也经常运用.希望读者不可轻视.

【易错例题分析】

例9分解因式:

错解:

∵-10=5×

(-2),5=1×

5,

5+1×

(-2)=23,

∴原式=(5ab+5y)(-2ab+5y).

警示:

错在没有掌握十字相乘法的含义和步骤.

正解:

∵5=1×

5,-10=5×

(-2),5×

(-2)=23.

∴原式=(ab+5y)(5ab-2y).

【同步练习】

一、选择题

1.如果,那么p等于( )

A.abB.a+bC.-abD.-(a+b)

2.如果,则b为( )

A.5B.-6C.-5D.6

3.多项式可分解为(x-5)(x-b),则a,b的值分别为( )

A.10和-2B.-10和2C.10和2D.-10和-2

4.不能用十字相乘法分解的是( )

A.B.

C.D.

5.分解结果等于(x+y-4)(2x+2y-5)的多项式是( )

A.

B.

C.

D.

6.将下述多项式分解后,有相同因式x-1的多项式有( )

①;

②;

③;

④;

⑤;

A.2个B.3个C.4个D.5个

二、填空题

7.__________.

8.(m+a)(m+b).

a=__________,b=__________.

9.(x-3)(__________).

10.____(x-y)(__________).

11..

12.当k=______时,多项式有一个因式为(__________).

13.若x-y=6,,则代数式的值为__________.

三、解答题

14.把下列各式分解因式:

(2);

(3);

(4);

(5);

(6).

15.把下列各式分解因式:

(4);

(6).

16.把下列各式分解因式:

17.已知有因式2x-5,把它分解因式.

18.已知x+y=2,xy=a+4,,求a的值.

参考答案

1.D2.B3.D4.C5.A6.C

7.(x+5)(x-2)8.1或-6,-6或19.2x+1

10.xy,x+2y11.,a,

12.-2,3x+1或x+213.17

14.

(1)原式

(2)原式

(3)原式

(4)原式

(5)原式

(6)原式

15.

(1)原式

(6)原式

16.

(1)原式

(3)原式

17.提示:

18.∵

又∵,xy=a+4,

,∴,

解之得,a=-7.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > PPT模板 > 其它模板

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1