电子竞赛数控电流源Word格式.docx

上传人:b****1 文档编号:13366655 上传时间:2022-10-10 格式:DOCX 页数:20 大小:292.55KB
下载 相关 举报
电子竞赛数控电流源Word格式.docx_第1页
第1页 / 共20页
电子竞赛数控电流源Word格式.docx_第2页
第2页 / 共20页
电子竞赛数控电流源Word格式.docx_第3页
第3页 / 共20页
电子竞赛数控电流源Word格式.docx_第4页
第4页 / 共20页
电子竞赛数控电流源Word格式.docx_第5页
第5页 / 共20页
点击查看更多>>
下载资源
资源描述

电子竞赛数控电流源Word格式.docx

《电子竞赛数控电流源Word格式.docx》由会员分享,可在线阅读,更多相关《电子竞赛数控电流源Word格式.docx(20页珍藏版)》请在冰豆网上搜索。

电子竞赛数控电流源Word格式.docx

(6)自制电源。

2、发挥部分

(1)输出电流范围为20mA~2000mA,步进1mA;

(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的%+3个字;

(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流的%+1mA;

(4)纹波电流≤;

(5)其他。

方案比较

一般电子设备在工作时,都需要稳定的直流电压或电流,电网通常是220V、50Hz,电压波动可达±

10%,甚至更高,而且可能含有尖端、浪涌或高频干扰。

因此直流稳压电源需要完成以下任务:

AC-DC高效转换、输出电压或电流稳定、抑制电网上的干扰、较小的传导发射及电磁辐射。

从基本原理上讲,可选择线性电源及开关电源两种形式。

(1)线性稳压电源

并联型线性稳压电源:

利用并联稳压二极管的方法吸收额外的电流,要求输入电源具有较高内阻,只适用于负载电流较小的场合,电路简单,但效率较低。

串联型线性稳压电源:

在输入电源及负载之间串联电压调整管,正由于在输入电源及负载之间串联电压调整管,将(Vin-Vout)转换为调整管上的发热,而调整管必须工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低(一般只有45%左右);

另外,由于调整上消耗较大的功率,所以需要采用大功率的调整管及体积很大的散热器。

(2)开关电源

开关电源的原理是以脉冲形式将输入直流电源的能量储存到电感或电容中,再用整流滤波方法将电感或电容两端的电压转换为直流电压,由于调压器件工作于开关方式,因此效率极高(一般90%),所以电源功耗很小,机内温升低,从而提高了整机的稳定性和可靠性,且体积很小。

但开关电源的缺点是由于调压器件工作于开关方式,因此dV、dI都很大,容易产生较强的传导发射及辐射发射,另外由于高低电位段具有不同的对地阻抗,而且地线网络对高频有较大阻抗,使两条线对大地形成不同的阻抗,即对高频差模电压产生不同的相移,则这种差模电压会转化为共模电压,从而产生干扰,共模干扰一旦产生,就很难滤除。

综上所述,线性电源的优点是电路简单、输出纹波小、不产生辐射干扰,缺点是效率低、体积较大、输入电压范围较窄;

开关电源的优点是效率高、小巧、输入电压范围很宽,缺点是输出纹波大,容易产生电磁干扰和共模干扰。

总体设计方案的确定

根据题目要求,设计的关键在于负载变化时恒流输出以及输出纹波小。

比较上述两种电源,设计原理决定采用串联型线性稳压电源。

针对线性电源的不足,电路器件使用MOS管,以其在极小的压差(100mV)下工作,来减小损耗,提高效率。

同时设计为数控电源,在控制方案上采用电压、电流双闭环控制,硬件电路实现PI运算,来稳定输出电流,使系统的静态误差满足要求。

并协调选择CPU、D/A、A/D等主要部件,使设计达到要求。

电源系统的总体框图如图1-1所示。

图1-1电源系统的总体框图

应当指出,目前虽然开关电源发展很快,但很多对高频干扰比较敏感的电器设备,如音响、逆变器、UPS等,从性能价格比上考虑,仍然使用的是线性电源。

2系统硬件设计

随着集成D/A转换器价格的降低,目前已广泛采用D/A转换器构成的程控电压源和电流源来驱动感性负载(如控制偏转线圈等所需的电流)。

性价比可以满足要求。

D/A转换器是单片机的重要接口之一,只有通过D/A转换器把经过单片机处理的数字信号转换成模拟信号才能实现对各类模拟量的控制、调节和显示。

依据前述的方案论证,电源的硬件设计采用16位分辨率的数模转换芯片AD5662结合单片机系统实现数控直流电流源的方案。

该方法同时可设定、显示电流值。

电源部分的设计

来自电网的电压经过变压器,得到15V的副边电压,再经过整流、滤波输出直流电压,其中滤波电容的选择依据是:

副边电压平均值为×

15=18V,电源的最大输出电流为,则输出等效负载为:

18/=,根据全波整流滤波原理,滤波电容C的取值应满足

()

可以计算电容C的取值范围为4200~7200

为进一步减小纹波,实际选取容值为4只4700uF/25V电解电容。

电流变换

D/A转换部分

1、AD5662的结构特点

AD5662是美国模拟器件公司(Analog,简称ADI)设计生产的精密16位单片数字/模拟变换器,它采用先进薄膜工艺制造而成。

具有以下特性:

低成本、低功耗、高精确度,最低精确度为12位。

工作电源为,当工作电压为3V、5V时,功耗为、,可由电池供电。

当处于掉电模式工作时,功耗分别为150nW和1000nW。

AD5662的8个引脚定义如下:

VDD:

+5V电源输入端;

VREF:

参考电压输入端;

VFB :

反馈电压输入端;

VOUT:

电压输出端;

DACS:

片选控制端;

SCLK:

时钟端;

DIN:

数字输入端;

GND:

模拟地。

2、AD5662的转换原理

AD5662的输出电压为:

其中:

为D/A转换器的基准电压,为。

为数字编码。

如图所示,设计的数控电流源输出为:

为采样电阻。

由此可见,

与数字编码

成正比。

这样,通过编程改变数字编码

即可实现对

的数字控制。

AD5662的最大输出为V,此时,可通过改变电阻

调整电流源满量程输出为,输出零点在系统校准时进行调整。

V/I变换部分

1、采样电阻的选择

(1)采样电阻的阻值根据V/I变换给定值与A/D转换的输入范围决定。

若阻值小,则功耗低,发热量小,但输出采样电压低,信噪比降低,需经AD620进行放大后,与A/D转换器CS5513的输入范围

2V相匹配。

所以折中考虑选用热稳定性较好的75mV/5A的标准采样电阻。

(2)功耗计算:

采样电阻的额定值75mV/5A,则阻值为75mV÷

5A=

本次设计最大输出电流为,则采样电阻上的压降为×

=,则在最大电流下的功耗为P=IU=×

=。

2、电流调整原理及调整管的选择

电流调整电路如图2-2所示。

图中Q1、R1、R3、R4和运放等组成电流调整电路,控制电压(D/AOUT)加在运放正输入端,R3、R4并联组成采样电阻,可调电阻R3用于微调采样电阻,采样电阻将输出电流转换为电压,采样电阻采用75mV/5A的分流器。

采样电压加在运放负输入端,同时送往单片机测量(A/DIN1)。

电流输出端为图中I-OUT1、I-OUT2两端点,R8为限流电阻。

当需要调高输出电流时,D/AOUT电压增加,运放输出电压升高,Q1导通程度增加,导致输出电流增加。

当需要调低输出电流时,D/AOUT电压减小,运放输出电压降低,Q1导通程度减小,导致输出电流减小。

图2-2电流调整电路

其中,MOS管的功耗计算为:

15V的副边电压,再经过整流、滤波输出直流电压为×

15=18V,设计电源输出电流最大为,MOS管的理论功耗为×

18=45W。

实际选取时,考虑一定的裕量,MOS管功耗应大于×

45=,故选用IRF520,其性能指标为:

其中滤波电容的选择依据是:

电路采用了电流反馈,正常情况下,MOS管不过流,但为了保护电源,既使输出电流大于4A时,电源依然可以不损坏,增加一个保险电阻,输出电流大于时,关断,电流减小时,自动恢复。

开路和过载保护:

解决开路和过载保护的方法是测量输出电压(图中I-OUT1、I-OUT2两端点间电压),由于这两点电压比较高,因此需分压后送A/D测量,分压电阻尽量取大,以减小对输出电流影响),当超过额定值时认为是开路或过载。

例如在开路状态时,输出端两点电压会很高,能够检测出来;

当出现过载,即负载电阻很大,输出电流也很大时,输出端两点电压也会很高,也能够检测出来,这时系统会将输出电流降低到0mA,同时产生报警信号,从而实现了开路和过载保护功能。

A/D采样部分的设计

CS5513结构性能

CS5513是一种低成本、易于使用、可用于直流测量的20位的模数转换器。

其封装为8脚SOIC,内部包括一个4阶ΔΣ调制器和一个滤波器,小体积,可以节省设计的空间。

低成本,低功耗,易于使用。

CS5513的8个引脚定义如下:

VCC:

DOUT:

数字输出端;

ADCS:

AIN+、AIN-:

模拟输入端;

CS5513的主要性能指标如下:

(1)线性误差:

%FS,无噪声分辨率:

17位。

(2)差分模拟输入(双极性)。

(3)参考电压范围:

250mV~5V。

(4)到163Hz输出字速率

(5)片上振荡器,无需再外加时钟源。

(6)电源配置:

V+=5V,V-=0V或多种双电源配置。

(7)低功耗:

正常模式为,休眠模式为10u

W。

根据这些优点,本次设计选用CS5513ADC对V/I变换输出的电流信号进行采样。

CS5513接口设计

CS5513的模拟输入为:

CS5513的差分输入范围大约是差分参考电压(VREF-V-)的±

(±

)倍。

当VREF和V-之间的参考电压为时,其完全差分为±

采样电阻上的输出压降为,与CS5513的允许输入相比,需放大1950÷

=52倍。

采用AD620进行放大。

AD620是一种高性能的仪用放大器其对称性结构可同时满足对放大器的抗共模干扰能力、输入阻抗、闭环增益的时间和温度稳定性等不同的性能要求。

通过调整

实现52倍的放大。

主控单元电路的设计

主控单元电路由单片机、硬件监控电路、LCD显示和键盘构成。

单片机

该系统的核心部分是89C58单片机。

它的片内带有32kB的flash存储器,其I/O接口资源分配如下:

P0口接LCD显示器。

P1口接4×

4位的矩阵键盘。

P2口可根据需要连接。

如图#######2-1所示,89C58单片机与AD5662接口连接中,89C58的输出由直接连到了DIN端,AD5662的DACS片选控制端则与相连。

CS5513与单片机之间采用串行接口,DOUT端与相连,ADCS片选控制端与相连。

接AD5662和CS5513的SCLK端。

硬件监控电路

硬件监控电路X5045内置512字节的E2PROM,用来存储系统校准A/D、D/A通道时的校准系数以及键盘设置的步进长度、滤波参数等,具有掉电保护功能。

该系统在工作过程中,由于干扰等因素的影响,CPU处于未知状态,比如一旦有可能出现死机、程序“跑飞”、进入死循环,或电源电流降到系统设定位置时就需要将系统复位,因此,为了使系统可靠工作并保存设定数据,利用X5045来完成复位、看门狗及电源监控。

LCD显示

采用8位并行的接口方式,具有内置汉字库的显示摸块LCM12832ZK,可显示两行,每行8个汉字,汉字、字符显示多。

LCD显示信息容量大、界面友好、直观,方便设定值的输入、测量值显示以及菜单显示和参数设置。

键盘

采用4×

4矩

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 解决方案 > 学习计划

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1